Skip to main content
Version: 3.2

Manage storage nodes on GCP

note

If you are running on GKE, visit Portworx on GKE.

Key-value store in Portworx

Portworx uses a key-value database (KVDB) to store the cluster's state, configuration data, and metadata associated with storage volumes and snapshots. You can configure either an external or an internal KVDB. For more information, see KVBD for Portworx topic.

Firewall settings for Portworx

Ensure ports 9001-9022 are open between the nodes that will run Portworx. Your nodes should also be able to reach the port KVDB is running on (for example etcd usually runs on port 2379).

Disk template

Portworx takes in a disk spec which gets used to provision GCP persistent disks dynamically.

A GCP disk template defines the Google persistent disk properties that Portworx will use as a reference. There are 2 ways you can provide this template to Portworx.

1. Using a template specification

The spec follows the following format:

"type=<GCP disk type>,size=<size of disk>"
  • type: Following two types are supported
    • pd-standard
    • pd-ssd
  • size: This is the size of the disk in GB

See GCP disk for more details on above parameters.

Examples:

  • "type=pd-ssd,size=200"
  • "type=pd-standard,size=200", "type=pd-ssd,size=100"

2. Using existing GCP disks as templates

You can also reference an existing GCP disk as a template. On every node where Portworx is brought up as a storage node, a new GCP disk(s) identical to the template will be created.

For example, if you created a template GCP disk called px-disk-template-1, you can pass this in to Portworx as a parameter as a storage device.

Ensure that these disks are created in the same zone as the GCP node group.

Limiting storage nodes

Portworx allows you to create a heterogenous cluster where some of the nodes are storage nodes and rest of them are storageless.

You can specify the number of storage nodes in your cluster by setting the max_storage_nodes_per_zone input argument. This instructs Portworx to limit the number of storage nodes in one zone to the value specified in max_storage_nodes_per_zone argument. The total number of storage nodes in your cluster will be:

Total Storage Nodes = (Num of Zones) * max_storage_nodes_per_zone

While planning capacity for your auto scaling cluster make sure the minimum size of your cluster is equal to the total number of storage nodes in Portworx. This ensures that when you scale up your cluster, only storageless nodes will be added. While when you scale down the cluster, it will scale to the minimum size which ensures that all Portworx storage nodes are online and available.

note

You can always ignore the max_storage_nodes_per_zone argument. When you scale up the cluster, the new nodes will also be storage nodes but while scaling down you will lose storage nodes causing Portworx to lose quorum.

Examples:

  • "-s", "type=pd-ssd,size=200", "-max_storage_nodes_per_zone", "1"

For a cluster of 6 nodes spanning 3 zones (us-east-1a,us-east-1b,us-east-1c), in the above example Portworx will have 3 storage nodes (one in each zone) and 3 storageless nodes. Portworx will create a total 3 disks of size 200 each and attach one disk to each storage node.

  • "-s", "type=pd-standard,size=200", "-s", "type=pd-ssd,size=100", "-max_storage_nodes_per_zone", "2"

For a cluster of 9 nodes spanning 2 zones (us-east-1a,us-east-1b), in the above example Portworx will have 4 storage nodes and 5 storageless nodes. Portworx will create a total of 8 disks (4 of size 200 and 4 of size 100). Portworx will attach a set of 2 disks (one of size 200 and one of size 100) to each of the 4 storage nodes.