Skip to main content
Version: 3.2

Install and configure OpenShift on IBM Cloud

OpenShift can be run on IBM Cloud with a Portworx storage cluster.

This document provides instructions for installing Portworx using the IBM catalog with OpenShift (OCP) on IBM Cloud. This document provides a default installation configuration which is designed to get you up and running with a typical cluster configuration with the following properties:

  • The cluster is located in a single availability zone
  • Portworx is installed using an internal KVDB
  • Kubernetes has access to the public network and gateway

Prerequisites

Before you start installing Portworx, ensure you meet the following minimum prerequisites:

  • You must have an IBM Cloud account with admin privileges. Portworx does not support using a service ID.
  • You must have a OpenShift cluster with at least 3 worker nodes deployed on IBM Cloud, and that cluster must meet the Portworx minimum requirements.
  • You must have ability to provision cloud storage for each worker node.

(Optional) Create a StorageClass for encrypting cloud drives

If you want to set up encryption for cloud drives, create a custom StorageClass in your cluster (where you plan to deploy Portworx). This may impact the performance of your environment. Follow the steps outlined in the IBM documentation.

Install Portworx

  1. Navigate to IBM Cloud. From the Catalog page, search for and select Portworx Enterprise.

  2. From the configuration page, make the following selections:

    • Under Select a location, specify the location in which your Kubernetes cluster is located.
    • Under Select a pricing plan, select either Portworx Enterprise with Disaster Recovery (DR) or Enterprise.
    • Under Configure your resource, do the following:
      • Choose a service name or accept the default.
      • Specify the resource group your Kubernetes cluster is in.
    • At IBM Cloud API key, enter your IBM Cloud API key. Note, this API key is essential for populating the OpenShift cluster name for the next step.
    • Choose the correct OpenShift cluster for Kubernetes or OpenShift Cluster name from the drop down list.
    • At Portworx cluster name, enter a valid Portworx cluster name.
    • At Cloud drives, select Use Cloud Drives from the drop-down menu. This reveals a number of new fields:
      • For Number of drives, select your desired number of cloud drives.
      • For Max storage nodes per zone, specify 3 storage nodes per zone.
      • For Storage Class name, retain the default storage class names. All cloud drives should show the same Storage Class name.
        • For encrypting cloud drives, select the custom StorageClass created by you from the dropdown.
      • For Size, define your desired disk size in GB.
    • For Portworx metadata Key-value store, specify Portworx KVDB. This deploys Portworx with an internal KVDB cluster.
    • For Secret type, keep Kubernetes secret.
    • Leave Helm Parameters blank.
    • Enable CSI.
    • For Portworx versions, specify your desired Portworx version.
  3. Agree to the terms and click Create to launch the Portworx cluster; this can take 20 minutes or more.

Verify if all pods are running

Enter the following oc get pods command to list and filter the results for Portworx pods:

oc get pods -n portworx -o wide | grep -e portworx -e px
portworx-api-774c2                                      1/1     Running   0                2m55s   192.168.121.196   username-k8s1-node0    <none>           <none>
portworx-api-t4lf9 1/1 Running 0 2m55s 192.168.121.99 username-k8s1-node1 <none> <none>
portworx-kvdb-94bpk 1/1 Running 0 4s 192.168.121.196 username-k8s1-node0 <none> <none>
portworx-operator-xxxx-xxxxxxxxxxxxx 1/1 Running 0 4m1s 10.244.1.99 username-k8s1-node0 <none> <none>
prometheus-px-prometheus-0 2/2 Running 0 2m41s 10.244.1.105 username-k8s1-node0 <none> <none>
px-cluster-1c3edc42-4541-48fc-b173-xxxx-xxxxxxxxxxxxx 2/2 Running 0 2m55s 192.168.121.196 username-k8s1-node0 <none> <none>
px-cluster-1c3edc42-4541-48fc-b173-xxxx-xxxxxxxxxxxxx 1/2 Running 0 2m55s 192.168.121.99 username-k8s1-node1 <none> <none>
px-csi-ext-868fcb9fc6-xxxxx 4/4 Running 0 3m5s 10.244.1.103 username-k8s1-node0 <none> <none>
px-csi-ext-868fcb9fc6-xxxxx 4/4 Running 0 3m5s 10.244.1.102 username-k8s1-node0 <none> <none>
px-csi-ext-868fcb9fc6-xxxxx 4/4 Running 0 3m5s 10.244.3.107 username-k8s1-node1 <none> <none>
px-prometheus-operator-59b98b5897-xxxxx 1/1 Running 0 3m3s 10.244.1.104 username-k8s1-node0 <none> <none>

Note the name of one of your px-cluster pods. You'll run pxctl commands from these pods in following steps.

Verify Portworx cluster status

You can find the status of the Portworx cluster by running pxctl status commands from a pod. Enter the following oc exec command, specifying the pod name you retrieved in the previous section:

oc exec px-cluster-1c3edc42-4541-48fc-b173-xxxx-xxxxxxxxxxxxx -n portworx -- /opt/pwx/bin/pxctl status
Defaulted container "portworx" out of: portworx, csi-node-driver-registrar
Status: PX is operational
Telemetry: Disabled or Unhealthy
Metering: Disabled or Unhealthy
License: Trial (expires in 31 days)
Node ID: 788bf810-57c4-4df1-xxxx-xxxxxxxxxxxxx
IP: 192.168.121.99
Local Storage Pool: 1 pool
POOL IO_PRIORITY RAID_LEVEL USABLE USED STATUS ZONE REGION
0 HIGH raid0 3.0 TiB 10 GiB Online default default
Local Storage Devices: 3 devices
Device Path Media Type Size Last-Scan
0:1 /dev/vdb STORAGE_MEDIUM_MAGNETIC 1.0 TiB 14 Jul 22 22:03 UTC
0:2 /dev/vdc STORAGE_MEDIUM_MAGNETIC 1.0 TiB 14 Jul 22 22:03 UTC
0:3 /dev/vdd STORAGE_MEDIUM_MAGNETIC 1.0 TiB 14 Jul 22 22:03 UTC
* Internal kvdb on this node is sharing this storage device /dev/vdc to store its data.
total - 3.0 TiB
Cache Devices:
* No cache devices
Cluster Summary
Cluster ID: px-cluster-1c3edc42-xxxx-xxxxxxxxxxxxx
Cluster UUID: 33a82fe9-d93b-435b-xxxx-xxxxxxxxxxxxx
Scheduler: kubernetes
Nodes: 2 node(s) with storage (2 online)
IP ID SchedulerNodeName Auth StorageNode Used Capacity Status StorageStatus Version Kernel OS
192.168.121.196 f6d87392-81f4-459a-xxxx-xxxxxxxxxxxxx username-k8s1-node0 Disabled Yes 10 GiB 3.0 TiB Online Up 2.11.0-81faacc 3.10.0-1127.el7.x86_64 CentOS Linux 7 (Core)
192.168.121.99 788bf810-57c4-4df1-xxxx-xxxxxxxxxxxxx username-k8s1-node1 Disabled Yes 10 GiB 3.0 TiB Online Up (This node) 2.11.0-81faacc 3.10.0-1127.el7.x86_64 CentOS Linux 7 (Core)
Global Storage Pool
Total Used : 20 GiB
Total Capacity : 6.0 TiB

The Portworx status will display PX is operational if your cluster is running as intended.

Verify pxctl cluster provision status

  • Find the storage cluster, the status should show as Online:

    oc -n portworx get storagecluster
    NAME                                              CLUSTER UUID                           STATUS   VERSION   AGE
    px-cluster-1c3edc42-4541-48fc-xxxx-xxxxxxxxxxxxx 33a82fe9-d93b-435b-xxxx-xxxxxxxxxxxx Online 2.11.0 10m
  • Find the storage nodes, the statuses should show as Online:

    oc -n portworx get storagenodes
    NAME                  ID                                      STATUS   VERSION          AGE
    username-k8s1-node0 f6d87392-81f4-459a-xxxx-xxxxxxxxxxxxx Online 2.11.0-81faacc 11m
    username-k8s1-node1 788bf810-57c4-4df1-xxxx-xxxxxxxxxxxxx Online 2.11.0-81faacc 11m
  • Verify the Portworx cluster provision status . Enter the following oc exec command, specifying the pod name you retrieved in the previous section:

    oc exec px-cluster-1c3edc42-4541-48fc-b173-xxxx-xxxxxxxxxxxxx -n portworx -- /opt/pwx/bin/pxctl cluster provision-status
    Defaulted container "portworx" out of: portworx, csi-node-driver-registrar
    NODE NODE STATUS POOL POOL STATUS IO_PRIORITY SIZE AVAILABLE USED PROVISIONED ZONE REGION RACK
    788bf810-57c4-4df1-xxxx-xxxxxxxxxxxx Up 0 ( 96e7ff01-fcff-4715-xxxx-xxxxxxxxxxxx ) Online HIGH 3.0 TiB 3.0 TiB 10 GiB 0 B default default default
    f6d87392-81f4-459a-xxxx-xxxxxxxxx Up 0 ( e06386e7-b769-xxxx-xxxxxxxxxxxxx ) Online HIGH 3.0 TiB 3.0 TiB 10 GiB 0 B default default default

Create your first PVC

For your apps to use persistent volumes powered by Portworx, you must use a StorageClass that references Portworx as the provisioner. Portworx includes a number of default StorageClasses, which you can reference with PersistentVolumeClaims (PVCs) you create. For a more general overview of how storage works within Kubernetes, refer to the Persistent Volumes section of the Kubernetes documentation.

Perform the following steps to create a PVC:

  1. Create a PVC referencing the px-csi-db default StorageClass and save the file:

    kind: PersistentVolumeClaim
    apiVersion: v1
    metadata:
    name: px-check-pvc
    spec:
    storageClassName: px-csi-db
    accessModes:
    - ReadWriteOnce
    resources:
    requests:
    storage: 2Gi
  2. Run the oc apply command to create a PVC:

    oc apply -f <your-pvc-name>.yaml
    persistentvolumeclaim/px-check-pvc created

Verify your StorageClass and PVC

  1. Enter the following oc get storageclass command, specify the name of the StorageClass you created in the steps above:

    oc get storageclass <your-storageclass-name>
    NAME                   PROVISIONER        RECLAIMPOLICY   VOLUMEBINDINGMODE   ALLOWVOLUMEEXPANSION   AGE
    px-csi-db pxd.portworx.com Delete Immediate false 24m

    oc will return details about your storageClass if it was created correctly. Verify the configuration details appear as you intended.

  2. Enter the oc get pvc command, if this is the only StorageClass and PVC you've created, you should see only one entry in the output:

    oc get pvc <your-pvc-name>
    NAME          STATUS   VOLUME                                     CAPACITY   ACCESS MODES   STORAGECLASS           AGE
    px-check-pvc Bound pvc-dce346e8-ff02-4dfb-xxxx-xxxxxxxxxxxxx 2Gi RWO example-storageclass 3m7s

    oc will return details about your PVC if it was created correctly. Verify the configuration details appear as you intended.

Further reading

Was this page helpful?