
REFERENCE ARCHITECTURE

Portworx on
Red Hat OpenShift
Bare Metal Reference
Architecture
OpenShift Virtualization Addendum
A validated architecture and design model to deploy Portworx® on Red Hat
OpenShift running on bare metal hosts for use with OpenShift Virtualization.

REFERENCE ARCHITECTURE

22

Contents
Introduction ...3

Target Use Cases..3

Technology Overview ..4

Design and Architecture ...5

Design Considerations ..6

Templates and Boot Images ...6

Snapshots ...6

Portworx Storage Classes ...7

Default Storage Class ..7

Data Volumes ..9

Storage Profiles ...12

Container Data Import Scratch Space ..14

Virtual Machine State Storage Classes ..15

File System Overhead...16

Storage Checkup ..16

High Availability ...17

Live Migration ..19

Performance ..21

Networking .. 23

Persistent Volume Claims .. 23

Virtual Machines ... 23

Upgrades ... 29

Migration Toolkit for Virtualization ... 30

Summary .. 33

REFERENCE ARCHITECTURE

3

Introduction

The purpose of this document is to serve as a supplemental guide to the Pure Storage® "Red Hat OpenShift
with Portworx on Bare Metal" Reference Architecture. This addendum builds upon the foundational design
outlined in the original base reference architecture, providing specific details and considerations for
deploying and running Red Hat OpenShift Virtualization on Portworx® Enterprise. It aims to offer additional
design guidance that complements the official documentation, helping organizations effectively integrate
OpenShift Virtualization with Portworx in a bare metal environment. This document is intended to ensure a
seamless, optimized deployment that leverages the strengths of both OpenShift Virtualization and Portworx,
delivering robust performance, scalability, and reliability for virtualized workloads.

Target Use Cases
This addendum is designed to address key use cases for organizations looking to enhance their infrastructure by integrating
OpenShift Virtualization with Portworx. The following scenarios represent ideal applications of this architecture, enabling
businesses to modernize, streamline operations, and future-proof their environments by:

• Modernizing traditional virtualization platforms: Organizations with existing traditional virtualization platforms
can leverage this architecture to re-platform their workloads onto a modern, cloud-native infrastructure. By running
virtual machines (VMs) within Red Hat OpenShift, you gain the flexibility and scalability of Kubernetes while
maintaining the ability to support traditional VM-based applications. This approach allows you to modernize your
infrastructure without sacrificing existing investments, positioning your organization for future innovation.

• Innovating for future growth: This architecture empowers businesses to innovate today while laying the groundwork
for future advancements. By adopting a unified platform that supports both containerized and virtualized workloads,
you ensure that your infrastructure is ready to adapt to new technologies and business needs as they arise. The
integration of OpenShift Virtualization with Portworx provides a consistent and scalable foundation for driving digital
transformation and fostering innovation.

• Creating consistent management across workloads: One of the primary benefits of integrating OpenShift
Virtualization with Portworx is the ability to achieve consistency in managing both containerized and virtualized
workloads. With consistent management, you can simplify operations, reduce the risk of errors, and improve
overall system reliability. By unifying your virtualization and containerization strategies under a single platform, this
architecture significantly increases operational efficiency. The streamlined deployment and management processes
reduce the time and resources required to maintain your environment, allowing your team to focus on higher-value
activities. Additionally, the built-in automation and scalability features of Portworx and OpenShift help optimize
resource utilization, leading to cost savings and improved performance.

These target use cases demonstrate the versatility and value of integrating OpenShift Virtualization with Portworx,
making it an ideal solution for organizations seeking to modernize their infrastructure and enhance operational capabilities.

https://www.purestorage.com/docs.html?item=/type/pdf/subtype/doc/path/content/dam/pdf/en/reference-architectures/ra-portworx-red-hat-openshift-bare-metal.pdf
https://www.purestorage.com/docs.html?item=/type/pdf/subtype/doc/path/content/dam/pdf/en/reference-architectures/ra-portworx-red-hat-openshift-bare-metal.pdf

REFERENCE ARCHITECTURE

4

Technology Overview
OpenShift Virtualization is built on the open-source KubeVirt project, which integrates the Linux kernel hypervisor KVM into
Kubernetes, enabling virtual machines (VMs) to be managed as native Kubernetes objects. KVM is a mature and trusted
hypervisor, embedded in the Red Hat Enterprise Linux kernel for many years. By incorporating a type-1 hypervisor directly
into OpenShift clusters, organizations can seamlessly run VMs and containers side by side within a unified Kubernetes
environment, eliminating the need to manage separate infrastructure for different types of workloads.

The virtualization capabilities within Red Hat OpenShift are powered by key components from the Red Hat Enterprise Linux
virtualization stack:

• Kernel-based virtual machine (KVM): KVM is a core virtualization module within the Linux kernel that transforms
the Linux operating system into a type-1 (bare-metal) hypervisor. It enables multiple VMs to run on a single physical
machine, each with its own isolated operating system. KVM provides the foundational framework for creating and
managing virtual CPUs and memory, while relying on other tools like QEMU for hardware emulation and VM lifecycle
management.

• Quick EMUlator (QEMU): QEMU is a user-space emulator and virtualizer that, when combined with KVM, provides
the necessary hardware emulation to run guest operating systems as VMs on a host machine. It emulates essential
hardware components such as CPUs, disks, and network interfaces. With KVM, QEMU leverages hardware-assisted
virtualization (e.g., Intel VT-x or AMD-V) to deliver near-native performance for guest OSes. It can also operate in
software emulation mode without KVM, though this results in slower performance.

• libvirt: libvirt is an open-source API, daemon, and management tool that offers a unified interface for managing
virtualization platforms, including KVM and QEMU. It abstracts the complexities of the underlying virtualization
technologies, making it easier to manage and control VMs across different hypervisors. libvirt handles tasks such
as starting, stopping, migrating, and configuring VMs without the need to interact directly with hypervisor-specific
command-line tools. It supports a variety of hypervisors, making it a widely used tool for managing virtualized
environments in both cloud and data center deployments.

To complement the virtualization capabilities provided by KVM, QEMU, and libvirt, Portworx Enterprise serves as an
enterprise-grade storage solution that meets the needs of both containerized and virtualized workloads within OpenShift.
Portworx offers robust management of persistent volumes for containers, as well as VM disks required for running VMs in
OpenShift. Whether dealing with persistent data for container workloads or VM storage, Portworx delivers comprehensive data
protection, business continuity and disaster recovery, capacity management, performance optimization, and security features
including authorization and encryption. This unified storage solution ensures operational efficiency and consistency across
both containerized and virtualized environments, supporting the demands of modern applications.

REFERENCE ARCHITECTURE

5

Design and Architecture
The overall architecture of running OpenShift Virtualization on a bare metal deployment with Portworx is designed to provide
a unified platform where virtual machines (VMs) and containers run side by side, seamlessly integrated within the same
Kubernetes cluster. This unification allows for greater flexibility and efficiency, enabling workloads to leverage the best of
both worlds—virtual machines for traditional, stateful applications and containers for modern, cloud-native microservices.
This document serves as an addendum to the Portworx on Red Hat OpenShift Bare Metal Reference Architecture and
provides specific configuration and deployment guidance for environments utilizing Portworx version 3.1.3, OpenShift 4.15, and
the OpenShift Migration Toolkit version 2.16.

Note: Portworx should be a minimum of version 3.1.3 to take advantage of capabilities designed for running virtual machines

with OpenShift Virtualization.

The architecture leverages the advanced storage capabilities of Portworx to ensure high availability, performance, and
scalability for both VMs and containers, allowing for seamless migration, disaster recovery, and data management across a
unified infrastructure.

FIGURE 1 General Reference Architecture

https://www.purestorage.com/content/dam/pdf/en/reference-architectures/ra-portworx-red-hat-openshift-bare-metal.pdf
https://www.purestorage.com/content/dam/pdf/en/reference-architectures/ra-portworx-red-hat-openshift-bare-metal.pdf

REFERENCE ARCHITECTURE

6

Design Considerations
This section of the document provides considerations and situations that should be accounted for prior to deploying
Red Hat OpenShift with Portworx Enterprise on bare metal nodes to operate OpenShift Virtualization virtual machines.
Deploying such an advanced and integrated environment requires careful planning to ensure optimal performance,
availability, reliability, and scalability. For tailored guidance and accurate sizing of your OpenShift Virtualization clusters
with Portworx, contact your Portworx Account Executive to ensure all aspects are properly configured for a seamless
deployment.

Properly sizing your infrastructure for the workloads it will run is a common but necessary consideration for bare metal
workloads. This is no different for OpenShift Virtualization configured clusters since the physical infrastructure is shared
by all virtual machines running in OpenShift. Basic sizing should include determining how much memory and compute can
be used and oversubscribed, but also for storage. The storage considerations for sizing follow the instructions laid out in
the Red Hat OpenShift on Bare Metal Reference Architecture as the considerations for virtual machine disks is a corollary
to pods with persistent volumes. This section lays out additional considerations needed for sizing Portworx storage for
virtual machines.

Templates and Boot Images

Virtual machine templates are available by default when you enable OpenShift Virtualization and provide storage for the
template catalog. The boot images used with those templates must also be accounted for when using Portworx storage.

Portworx recommends accounting for 1.5TB in disk space to store the default images from Red Hat and any other images
that are to be uploaded for custom images. This accounts for roughly 500GB in storage size with a replication factor of
three for redundancy.

Snapshots

When planning disk space for managing Portworx snapshots of virtual machines in your OpenShift Virtualization
environment, it's important to understand how snapshots function and the storage they may require. Snapshots in
Portworx are point-in-time captures of data volumes that efficiently allow for backup and restoration. However, they can
consume a significant amount of disk space, depending on how much the data changes after each snapshot is taken.

The storage space used by snapshots largely depends on the rate at which your data changes. Snapshots only store
the differences (deltas) between the current state and the previous snapshot, not full copies of the entire data volume.
Therefore, if your virtual machines have a high rate of data change, snapshots will require more disk space.

To estimate the additional storage required for snapshots, you need to consider the rate of data change for your
applications, the frequency of snapshots, and how long snapshots will be retained.

For example:

A virtual machine with a disk that is 30GB in size:

• with an hourly change rate of 10%,

• with an hourly snapshot schedule,

• storing a total of 7 snapshots

Would consume: 30GB(10% x 7) = 21GB
This means you would need an extra 21GB of disk space to store these snapshots.

REFERENCE ARCHITECTURE

7

Estimating these requirements can be challenging, especially for workloads with unpredictable or varying change rates. In
such cases, leveraging the Portworx AutoPilot with Cloud Drive functionality for Pure Storage FlashArray™ is recommended.
This approach allows you to start with an estimated amount of storage capacity for the cluster and automatically expand the
storage as needed, ensuring you have sufficient space for snapshots and virtual machines without manual intervention.

Portworx Storage Classes

By default, Portworx deploys several pre-configured storage classes immediately upon creating the storage cluster. These
storage classes offer a range of options to help you get started quickly and include support for both Kubernetes in-tree CSI
provisioners and the preferred external CSI provisioner.

Portworx recommends using the external CSI provisioner for creating persistent volumes. You can easily identify these storage
classes as their names include the “-csi-” string and their provisioner is listed as pxd.portworx.com

Portworx storage classes can also be created to meet the specific requirements of the applications that will use it. Portworx
has a list of parameters that can be added to a storage class that manages things like encryption, access modes, I/O limits,
filesystems, and many others. When creating new storage classes, Portworx recommends using the pxd.portworx.com
provisioner.

Default Storage Class

OpenShift Virtualization simplifies the deployment of virtual machines (VMs) by providing a catalog of default templates for
several operating system types, such as CentOS, Red Hat Enterprise Linux, and Fedora. These templates come with pre-
configured settings and parameters, including boot sources such as operating system disk images. Boot sources are essential
for initializing virtual machines, as they contain the necessary files to boot and run the OS on the VMs.

To facilitate the automatic download and availability of boot sources for these operating systems, OpenShift Virtualization
relies on a default storage class with ReadWriteMany (RWX) access mode capabilities. This access mode allows multiple
nodes to read from and write to the same persistent volume (PV) simultaneously.

If the default storage class configured in the OpenShift cluster does not support RWX access modes, the boot sources
for the default VM templates will not be automatically downloaded. OpenShift Virtualization will generate an alert labeled
"CDIDefaultStorageClassDegraded". This alert indicates that the default storage class does not meet the requirements for
RWX access, and therefore, the cluster cannot automatically manage or provide the necessary boot sources.

REFERENCE ARCHITECTURE

8

FIGURE 2 OpenShift Template Catalog

To change the default storage class from the command line, first remove the existing default storage class.

kubectl patch storageclass <EXISTING-DEFAULT-STORAGECLASS-NAME> -p '{"metadata": {"annotations": {"storageclass.
kubernetes.io/is-default-class":"false"}}}'

Then patch one of the existing storage classes that provides RWX access modes. An example storageclass meant for virtual
machines can be found in the Live Migration section later in this document.

kubectl patch storageclass <NEW_RWX_STORAGECLASS_NAME> -p '{"metadata": {"annotations":{"storageclass.kubernetes.io/
is-default-class":"true"}}}'

As the boot volumes are automatically downloaded, they can be viewed in the OpenShift console under the Virtualization tab.

REFERENCE ARCHITECTURE

9

FIGURE 3 OpenShift Boot Volumes

Data Volumes

In OpenShift Virtualization, data volumes are objects that manage the initial lifecycle of persistent storage for virtual machines
(VMs), including where the VM disk is sourced from, e.g. an existing PVC or registry image. PVCs serve as the storage
backend for VM disks, providing the necessary data persistence for both operating systems and application data. Data
volumes are an abstraction layer for VM disks, which are provided via Kubernetes PersistentVolumeClaims (PVCs).

Data volumes are integral to OpenShift Virtualization as they define how storage is allocated and populated when the VM
disk is created. They provide a consistent way to handle storage for VMs, enabling integration with Kubernetes’ storage
orchestration capabilities. When a VM is created in OpenShift Virtualization, it relies on one or more PVCs to provide the
necessary storage for its virtual disks.

When creating virtual machines through the OpenShift UI or by using the dataVolumeTemplate field in the VM specification,
the data volumes share the same lifecycle as the virtual machine itself. Meaning that if you were to delete the virtual machine,
the data volume would also be deleted. If your use case requires virtual machines and data volume lifecycles to
be independent of each other, the data volume should be created separately, either through the storage API (preferred,
see storage profile section in this document) or through the Kubernetes PVC API.

The source specification within a data volume defines the origin or the method by which the data for the volume is populated.
Essentially, the source spec determines how the initial content of the VM disk is created or imported, providing flexibility in
managing VM storage. For example the source spec can reference different types of sources for different use cases. These
data volumes can include an existing disk image, a volume to clone, an image from a URL or a blank disk.

For virtual machines that are built from the default OpenShift templates, the boot source will be a PVC for that specific virtual
machine template that has the operating system pre-installed. Creating a data volume from this instance works like a clone

REFERENCE ARCHITECTURE

10

operation where all the data in the template’s PVC will be used as the starting point for this data volume as seen from an
example below.

spec:
 source:
 pvc:
 name: rhel9-d23c02e124d3
 namespace: openshift-virtualization-os-images
 storage:
 resources:
 requests:
 storage: 30Gi

To dive deeper into this example, the template itself has a data volume, and that source comes from the URL for the image in
the image registry. See below.

spec:
 source:
 registry:
 pullMethod: node
 url: docker://quay.io/containerdisks/centos-stream@
sha256:a358a97caa12326de6281e864e599bf65894c8a81d9a4cc9ae789592e7e81bb0
 storage:
 resources:
 requests:
 storage: 30Gi

When deploying a data volume, it is possible to preallocate disk space within the storage system. Preallocation can improve
write performance for applications by reserving and initializing the entire storage space for the volume at time of creation,
sometimes referred to as thick-provisioning. Reserving this space at the data volume creation, removes the need to reserve
space before each write operation of the virtual machine using the volume.

The performance benefits of using preallocation are muted when using a persistent volume in filesystem mode. In filesystem
mode, the filesystem metadata will be updated to reflect the allocated space, but the physical blocks may not be zeroed out.
This may provide performance benefits by reducing fragmentation, but the benefits will be less pronounced compared to
a volume in block mode.

REFERENCE ARCHITECTURE

11

FIGURE 4 Figure 4. Preallocation

spec:
 preallocation: true

Choosing whether to use preallocation for virtual machine disks involves weighing the trade-offs between performance and
storage capacity usage. Preallocation can improve application performance by reserving and initializing the entire disk space
upfront, leading to faster and more consistent I/O operations. However, this method uses all the allocated storage capacity
right away, which might not always be ideal depending on the storage constraints of your environment.

In the current filesystem mode supported by Portworx for Red Hat OpenShift Virtualization, preallocation has minimal
impact on performance. This is because filesystem-based storage does not benefit significantly from the contiguous block
allocation that preallocation provides. As a result, administrators often choose not to enable preallocation to maximize storage
efficiency. This approach, known as thin provisioning, allows unused storage space to be dynamically shared among all virtual
machines in the cluster. By doing so, administrators can allocate more than 100% of the total available storage capacity.
However, this strategy carries the risk that the cluster could run out of space if all virtual machines attempt to use their full
allocated storage simultaneously.

This risk can be mitigated by utilizing Portworx Cloud Drives with Autopilot rules, which automatically manage storage
capacity and resources to prevent over-provisioning issues.

Once Portworx releases RWX block access modes for OpenShift Virtualization, this decision framework will become more
critical. In block storage mode, preallocation could offer substantial performance advantages by ensuring contiguous
allocation of storage space, reducing fragmentation, and optimizing I/O operations. Therefore, the choice between
preallocation and thin provisioning should be carefully considered based on the specific performance and capacity
requirements of your virtual machine workloads.

Data volumes can also use annotations to change their functionality. For example, the annotation v1.multus-cni.io/default-
network: bridge-network can be used to specify which network importer pods use to copy data from a source, into the
volume. For more information on the annotations available, see the Red Hat OpenShift Virtualization documentation.

REFERENCE ARCHITECTURE

12

Storage Profiles

A storage profile in OpenShift Virtualization is a custom resource that provides optimized storage settings based on a specific
Kubernetes storage class. Each storage class in the cluster has a corresponding storage profile that helps streamline the
creation of data volumes, minimizing configuration errors and simplifying the process for users. When you create a data
volume through the storage API, the storage profile automatically selects the best storage options for a virtual machine based
on the underlying storage class.

For example, a Kubernetes storage class might support multiple access modes, such as ReadWriteMany (RWX) and
ReadWriteOnce (RWO), as well as different volume modes, such as Block or Filesystem. A storage profile associated with
that class will define the most suitable access and volume modes for a VM running in OpenShift Virtualization. To enable
features like live migration, the storage profile could ensure that a data volume is created with RWX access mode, assuming
the storage class supports these options. This approach reduces the number of decisions users need to make when deploying
virtual machines, ensuring consistency and reliability.

When creating or customizing VM disks through the OpenShift UI, there is an option to use the optimized storage profile
settings. The UI displays the storage settings that will be applied based on the selected storage class. For instance, a storage
class named "vm-storage" might automatically use the ReadWriteMany access mode and a Filesystem volume mode, as
indicated in the OpenShift console.

FIGURE 5 Apply Storage Profile Settings

To view the specific settings defined in a storage profile, you can query the Kubernetes API using the following command:

oc describe storageprofile <Storage_Profile_Name>

The status section of the output will display the available access and volume mode combinations based on the associated
storage class. For example:

Status:
 Claim Property Sets:
 Access Modes:
 ReadWriteMany
 Volume Mode: Filesystem
 Access Modes:
 ReadWriteOnce
 Volume Mode: Block
 Access Modes:
 ReadWriteOnce
 Volume Mode: Filesystem

REFERENCE ARCHITECTURE

13

When using storage profiles, an important consideration is the CloneStrategy. The CloneStrategy defines how data is
replicated from an existing PersistentVolumeClaim (PVC) to a new data volume, which is particularly useful when creating new
virtual machines from existing images or snapshots.

OpenShift Virtualization offers different CloneStrategy options to optimize cloning operations based on storage performance,
efficiency, and backend capabilities:

• CSI-Clone: Uses the storage backend's native cloning capabilities to create a fast, efficient duplicate of the source
volume, with minimal overhead. This is the preferred method for environments with CSI-based storage backends.

• Snapshot: Creates a point-in-time snapshot of the source volume and then provisions a new volume from this
snapshot, ensuring data consistency but potentially adding overhead and time due to the snapshot process.

• Copy: Performs a complete data copy from the source volume to a new volume using standard read and write
operations. This method is universally supported but is generally slower and more resource-intensive compared to
CSI-Clone or Snapshot.

Portworx provides default storage classes for both CSI-based and non-CSI provisioners in the default installation. Storage
classes using the pxd.portworx.com provisioner utilize the CSI-Clone strategy for creating new data volumes, making it the
most efficient option for deploying VMs from templates due to its speed and low overhead. Conversely, storage classes using
the legacy kubernetes.io/portworx-volume provisioner employ the "Copy" strategy, which should otherwise be avoided due to
the additional overhead of copying data between volumes.

You can update the cloning strategy for a storage profile by modifying the spec.cloneStrategy field in the storage profile
configuration.

It is a good practice to set the default access mode, volume mode, and cloneStrategy for each of the storage profiles you plan
to use for virtual machines. To do this, use the following command:

oc edit storageprofile <Storage_Profile_Name>

You can then set the desired access and volume modes:

spec:
 claimPropertySets:
 - accessModes:
 - ReadWriteMany
 volumeMode:
 Filesystem
 cloneStrategy: csi-clone

Note: If you plan to run Storage Checkup as discussed later in this document, you must set the default property sets and clone

strategy for each storage profile. Remember that the storage profiles based on the kubernetes.io/portworx-volume provisioner

should have a cloneStrategy of copy and pxd.portworx.com should be csi-clone.

By understanding and configuring storage profiles appropriately, administrators can ensure that virtual machine storage is
optimized for performance, efficiency, and operational needs within OpenShift Virtualization.

REFERENCE ARCHITECTURE

14

Container Data Import Scratch Space

The Container Data Importer (CDI) is a key component in KubeVirt that facilitates the import, upload, and conversion of
virtual machine disk images to persistent volumes (PVs) within a Kubernetes cluster. It streamlines the process of getting
external data—such as raw disk images or QCOW2—or ISO files into the cluster for use by virtual machines. CDI is particularly
useful in scenarios where virtual machines need to be initialized with existing data or when migrating workloads from other
environments.

CDI requires temporary storage, known as scratch space, during the import process. This scratch space is used to store
intermediate data or perform transformations on disk images before they are written to the final Persistent Volume. The
scratch space typically resides on a separate Persistent Volume that CDI dynamically provisions and manages. The following
operations require scratch space:

• Registry imports

• Uploading image

• HTTP imports of archived images

• HTTP imports of authenticated images

• HTTP imports of custom certificates

When creating the HyperConverged Configuration you may specify a scratchSpaceStorageClass specification that defines
which storage class will be used for creating these temporary volumes. This storage class requires a file volume mode
regardless of the PVC backing the origin data volume.

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
spec:
 scratchSpaceStorageClass: "<STORAGE_CLASS_HERE>"

Since these volumes are ephemeral and only used temporarily during data import tasks, it is not necessary to protect these
volumes with a data protection solution. However, Portworx recommends using a replication factor of one to reduce storage
usage. Since these volumes are temporary, there is no need to add additional replicas which use valuable storage space.

REFERENCE ARCHITECTURE

15

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 annotations:
 name: scratch-space
parameters:
 repl: "1"
 sharedv4: "true"
 sharedv4_svc_type: "ClusterIP"
provisioner: pxd.portworx.com
reclaimPolicy: Delete
volumeBindingMode: Immediate
allowVolumeExpansion: true

Virtual Machine State Storage Classes

In some circumstances, virtual machines need to store sensitive data outside of the virtual machine itself. One example of this
is for a virtual trusted platform module (vTPM). Virtual TPMs require persistent storage to security store sensitive data such as
cryptographic keys and certificates. This storage must be reliable and isolated to ensure that security guarantees provided by
the vTPM are maintained throughout the lifecycle of the virtual machine.

Persistent storage can be provided for solutions like vTPM through the VMStateStorageClass configuration in the
hyperconverged configuration of OpenShift Virtualization. The storage class used must be of the type “filesystem” and
support ReadWriteMany access mode.

kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
spec:
 vmStateStorageClass: "<STORAGE_CLASS_HERE>"

Portworx strongly recommends defining a VMStateStorageClass during the provisioning of the hyperconverged configuration,
especially since certain virtual machines, such as those running Windows 11, require a Trusted Platform Module for operation.
To ensure high availability, this storage class should be configured with a replication factor of two or higher, providing
resilience in the event of an outage. The volumeBindingMode should also be set to “retain” to ensure that the accidental
deletion of the persistent volume claim does not remove the data in this volume.

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 annotations:
 name: vmstate
parameters:
 repl: "3"
 sharedv4: "true"
 sharedv4_svc_type: "ClusterIP"
provisioner: pxd.portworx.com
reclaimPolicy: Retain
volumeBindingMode: Immediate
allowVolumeExpansion: true

REFERENCE ARCHITECTURE

16

File System Overhead

Filesystem overhead refers to the portion of storage space on a filesystem that is reserved for the filesystem’s internal
management and metadata. This overhead is not directly usable for storing application data because it is used for maintaining
the structure and integrity of the file system itself. The amount of overhead can vary depending on the type of filesystem and
its configuration.

During a migration process using the OpenShift Migration Toolkit for Virtualization (MTV), it’s crucial to account for filesystem
overhead to ensure that the destination environment has sufficient storage capacity to accommodate both the application
data and the filesystem's internal needs. If filesystem overhead is not considered, the migration might fail due to insufficient
storage space, leading to interruptions and potential data loss.

The amount of filesystem overhead to provide during a migration can be configured in the filesystemOverhead.global spec of
the hyperconverged object:

kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
spec:
 filesystemOverhead:
 global: "0.08"

Portworx recommends setting this value to “0.08” or higher to ensure there is sufficient room in the persistent volumes to
perform a migration with the Migration Toolkit for Virtualization.

Storage Checkup

Red Hat OpenShift provides a cluster checkup framework to ensure the cluster is optimally configured for OpenShift
Virtualization. Portworx recommends running the storage checkup either from the command line or through the OpenShift UI
prior to deploying production workloads.

As noted earlier in the document, each storage profile needs to have the appropriate claimPropertySets, and cloneStrategy in
order to complete successfully. The storage checkup is a good way to check to ensure these values are set for each storage
profile in the cluster.

REFERENCE ARCHITECTURE

17

FIGURE 6 OpenShift Storage Checkup

High Availability

Virtual machines, like any other application, are susceptible to outages caused by failures in the underlying physical hardware.
These failures can result from a variety of issues, including power outages, hardware malfunctions, or human error. “High
availability” (HA) refers to the system's ability to automatically and quickly recover from such failures, ensuring minimal
disruption to services.

In Kubernetes and Red Hat OpenShift, orchestration is built into the control plane, enabling the automatic restart of failed
applications based on health checks and desired state configurations. Specifically, the OpenShift control plane includes logic
to restart container-based workloads on alternative nodes in the event of a node failure.

However, when dealing with workloads that contain persistent data, such as virtual machines running on OpenShift
Virtualization, there is an additional requirement: the virtual machine’s disks must be accessible by all nodes in the cluster to
allow the VM to be restarted on another node. For instance, if a virtual machine is using local storage directly attached to a
single worker node, and that node fails, the VM cannot be restarted on another node unless those nodes have access to the
same storage. This requirement, known as "shared storage," is critical for ensuring the high availability of virtual machines in
OpenShift. Without shared storage, the HA capabilities of OpenShift cannot fully protect against node failures for virtualized
workloads.

Additionally, all the considerations outlined in the Portworx Enterprise on Red Hat OpenShift bare metal base reference
architecture should be strictly adhered to when designing for OpenShift Virtualization. This includes key strategies such
as distributing clusters over multiple fault domains or racks to enhance fault tolerance and reduce the risk of simultaneous
failures affecting multiple nodes, and using multiple replicas for persistent volumes.

REFERENCE ARCHITECTURE

18

When running virtual machines in Kubernetes clusters, it is essential to maintain sufficient spare capacity, particularly in terms
of CPU and memory, to handle node or fault domain failures. In the event of a failure, both pods and virtual machines will need
available resources to be rescheduled and restarted on the remaining nodes. This becomes critical in environments where the
Kubernetes Out of Memory (OOM) manager may begin terminating processes if nodes are overwhelmed, potentially disrupting
workloads. Proper capacity planning ensures stability and prevents resource exhaustion during pod or virtual machine restart
scenarios.

When using some storage solutions that comply with the CSI specification, failover can take several minutes to complete. This
delay occurs because before a container-based workload with attached persistent volumes can fail over to another node, the
storage connection between the failed node and the storage solution must be fully disconnected. Many solutions impose a
timeout period—often up to five minutes—before this disconnection occurs, resulting in lengthy failover times.

In contrast, with Portworx Enterprise, the storage connection is severed immediately after the OpenShift control plane marks
the node as unhealthy. This rapid disconnection allows virtual machines to fail over to another node much more quickly,
significantly reducing downtime and improving overall availability. By following the guidelines provided in the reference
architecture and leveraging Portworx's capabilities, you can ensure a robust, high-availability environment for your virtualized
workloads on OpenShift.

Host Failures

As mentioned earlier in this document, the Kubernetes control plane is designed to automatically restart failed containers
or virtual machines on healthy nodes in the event of a node failure. When a host failure occurs, STORK will help to schedule
any virtual machines that were running on that node, to a node where a replica exists. The virtual machine can then access
the virtual disks through a bind mount since data is local to the VM. Using bind mounts here reduced the amount of time
needed for failovers compared to using a hardware storage array since iSCSI or Fibre Channel connections don’t need to be
disconnected and reconnected on additional nodes.

FIGURE 7 Host Failures Example

Boot Storms

REFERENCE ARCHITECTURE

19

When a node fails, any virtual machines running on that node are automatically restarted on another node. If a large number of
VMs were running on the failed node, they would all attempt to boot simultaneously, creating what is commonly referred to as
a boot storm. This sudden spike in I/O demand, caused by all the virtual machines attempting to load their operating systems
at once, can place significant strain on the storage system.

When designing for mitigation of boot storm impacts, you must take into consideration VM density on surviving nodes and the
impact on CPU and memory allocation. In addition, the impact on storage must be taken into consideration due to the high
number of IOPS issued during a boot storm event.

Portworx recommends that you test boot storm impacts due to a failed worker node in a test or development environment
before deploying into Production to observe the impact these situations can create.

Live Migration

Live migration is a critical feature for managing virtual machine (VM) workloads in OpenShift Virtualization, playing a vital role
in maintaining high application availability and operational efficiency. This capability allows running VMs to be seamlessly
moved from one host to another without downtime, ensuring that applications continue to operate smoothly even during
infrastructure changes.

The benefits of live migration are particularly evident in several key scenarios:

• Host upgrades and planned maintenance: During scheduled maintenance or host upgrades, live migration allows
administrators to move VMs to other nodes in the cluster without interrupting services. This enables routine
maintenance to be performed without impacting application uptime, reducing the risk of downtime and ensuring
business continuity.

• Cluster rebalancing: As workloads evolve, certain nodes in a cluster may become overloaded while others are
underutilized. Live migration facilitates cluster rebalancing by enabling administrators to redistribute VMs across the
available nodes, optimizing resource utilization, and maintaining performance levels across the environment.

• Improved application availability: By enabling VMs to be moved without interruption, live migration directly
enhances application availability. In the event of a planned host outage or other critical issues, VMs can be quickly
relocated to healthy nodes, minimizing the impact on end-users and ensuring that services remain available.

Live migration is an essential tool for modern IT operations, enabling greater flexibility, improved resource management, and
enhanced resilience within OpenShift Virtualization environments. By leveraging this capability, organizations can achieve a
higher level of operational efficiency while maintaining the availability and performance of their critical applications.

Shared Storage for Live Migration (RWX)

The live migration capability in OpenShift Virtualization relies on a key feature of the underlying storage system. For a virtual
machine to be moved seamlessly between hosts, both the source and destination hosts must have access to the same
storage device where the virtual machine’s disks are stored. In a Kubernetes environment, this is accomplished by using
storage with a ReadWriteMany (RWX) access mode. Portworx supports persistent volumes with multiple access modes,
including RWX. Customers looking to leverage live migration functionality must ensure that their virtual machine workloads are
backed by RWX persistent volumes to facilitate this capability.

REFERENCE ARCHITECTURE

20

FIGURE 8 Live Migrations

Note: Migrating a virtual machine to another node does not move the volume replica. Virtual machines will continue to access

their virtual volumes across nodes until the volume replica is taken offline through a node failure, or maintenance activity.

Portworx can provide access to RWX volumes through a storage class configured for RWX access modes. The snippet below
is an example of a RWX storage class that can facilitate live migrations.

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 annotations:
 name: vm-storage
parameters:
 repl: "3"
 sharedv4: "true"
 sharedv4_mount_options: vers=3.0,nolock
provisioner: pxd.portworx.com
volumeBindingMode: WaitForFirstConsumer
allowVolumeExpansion: true

To improve the manageability of the environment, Portworx recommends making your virtual machine storage class the
default storage class for the cluster. This prevents users from needing to understand and specify which storage class should
be used for virtual machines.

Mixed Processor Types

An OpenShift cluster can be built with mixed processor types across nodes, but should be discouraged. For example some
worker nodes use an AMD processor type while others use an Intel processor. This is a valid configuration but prevents live
migrations from occurring between nodes with different processor types. If using mixed processor types, please create an
OpenShift machineset for each processor type.

REFERENCE ARCHITECTURE

21

Portworx recommends using a similar processor type for each node participating in the OpenShift cluster to provide flexibility
with virtual machine workloads. However, if a mixed processor type environment is necessary, Portworx recommends using
node affinity with the portworx volumes to “pin” Portworx replicas to specific nodes. Using volume affinity rules, can ensure
that replicas will be available on multiple nodes where virtual machines may be migrated.

Performance

Several factors can affect the storage performance of virtual machines running in a Kubernetes environment. Review the
sections below for additional performance information related to virtual machines running on OpenShift.

Access Modes

When deploying OpenShift Virtualization with Portworx, it’s important to understand how different access modes and storage
types impact your performance and capabilities.

There are two commonly used types of access modes to consider for virtual machine storage volumes.

• ReadWriteMany (RWX): This access mode allows multiple nodes in a Kubernetes cluster to read from and write to
the same persistent volume simultaneously. RWX is essential for scenarios where multiple nodes need concurrent
access to the same data, such as in virtual machine environments requiring live migration.

• ReadWriteOnce (RWO): In contrast, RWO restricts access to a single node at a time. While this mode is suitable for
workloads that don’t need shared storage, it often provides better performance due to reduced overhead.

These access modes can be used with both filesystem based storage or block storage devices. Block storage offers direct
access to raw storage without the overhead of a file system, providing faster I/O performance. However, block storage
typically works with RWO, meaning only one node can access the volume at a time. Filesystem-based storage involves a layer
of overhead because it adds a file system on top of raw storage blocks. This overhead can impact read and write speeds,
especially for I/O-intensive workloads.

For live migration to function in OpenShift Virtualization, RWX access modes are required. Live migration allows a VM to move
between different nodes without downtime, making RWX crucial for ensuring that multiple nodes can access the same data
during the migration process. Portworx supports RWX access modes using filesystem-based storage, which allows multiple
nodes in the cluster to access the same Persistent Volume. This ensures that live migration is possible for virtual machines
running in OpenShift Virtualization. However, it’s important to note that while filesystem-based RWX storage supports live
migration, its performance may be lower than block storage due to the additional overhead.

If your priority is performance and live migration isn’t required, Portworx can also provide RWO block storage. Block storage
delivers better performance for I/O-heavy workloads, but it limits the deployment to a single node, meaning live migration isn’t
possible. This trade-off is important to consider based on your workload requirements. The table below shows the decision
matrix on what type of storage to use for different use cases.

REFERENCE ARCHITECTURE

22

Capabilities RWX Filesystem RWO Block

Live Migrations Yes No

Best for Performance No Yes

TABLE 1 Access Mode Capabilities

To ensure that customer service level agreements (SLAs) can be met when using Portworx for OpenShift Virtualization
deployments, Portworx employs an assessment-based process called Directed Availability. This process is a part of the sales
engagement and involves a thorough assessment of the customer’s environment, workload requirements, and performance
expectations. Directed Availability is a structured evaluation process that helps determine the suitability of Portworx storage
solutions for specific customer environments. It assesses the customer's unique storage performance needs, particularly in
relation to virtualization workloads, to ensure that the chosen configuration can meet or exceed the required SLAs.

If you are considering deploying OpenShift Virtualization with Portworx and have specific performance requirements, it is
crucial to understand the capabilities and limitations of RWX filesystem-based storage. For detailed guidance and to learn
more about how the Directed Availability process can help you achieve your performance goals, please contact your Portworx
Account Executive. They can provide additional insights and support tailored to your specific environment and needs.

By understanding these considerations and leveraging Portworx's expertise, you can design a storage solution that not only
supports your OpenShift Virtualization deployment but also meets your performance and availability objectives.

Workload Distribution

A well-balanced cluster is essential for evenly distributing workloads across all worker nodes and storage devices. When
virtual machines and volume replicas are concentrated on a few nodes, “hot spots” can form, where certain resources are
overused while others remain idle. To prevent performance bottlenecks, it’s important to distribute workloads uniformly across
the cluster, making efficient use of both compute and storage resources.

This becomes especially important during virtual machine cloning operations. For example, when you clone an existing virtual
machine that has volume replicas on nodes 1, 3, and 5, the resultant cloned VM and its volumes will be placed on the same
nodes. Over time, this repetition can lead to hot spots, where nodes 1, 3, and 5 become overburdened, impacting cluster
performance. Regularly monitoring and adjusting the distribution of workloads will help prevent these imbalances.

To mitigate storage hotspots, use Portworx Autopilot to rebalance storage pools across the cluster. An Autopilot rule like the
one below helps distribute volume replicas across the Kubernetes cluster on a best effort basis.

REFERENCE ARCHITECTURE

23

apiVersion: autopilot.libopenstorage.org/v1alpha1
kind: AutopilotRule
metadata:
 name: pool-rebalance
spec:
 conditions:
 requiredMatches: 1
 expressions:
 - keyAlias: PoolProvDeviationPerc
 operator: NotInRange
 values:
 - "-20"
 - "20"
 - keyAlias: PoolUsageDeviationPerc
 operator: NotInRange
 values:
 - "-20"
 - "20"
 actions:
 - name: "openstorage.io.action.storagepool/rebalance"

Networking

Networking is an important design consideration for any virtual machine design, but is outside the scope of this document
focused on the storage considerations for a Red Hat OpenShift Virtualization cluster.

The guidance from the Portworx found in the Red Hat OpenShift Bare Metal reference architecture linked above should be
followed for networking considerations here as well. The Portworx data network should be placed on different NICs to ensure
the storage network and virtual machine or Kubernetes networks aren’t in contention for resources. As a good design practice
management, live migration, storage, and application networks should be placed on different physical devices to prevent
resource contention within the cluster.

Persistent Volume Claims

There may be times when you pre-create a persistent volume for use with KubeVirt virtual machines. Portworx can support
this method of deploying virtual machine disks in this way but requires an annotation in the PVC specification.

 portworx.io/app: kubevirt

This annotation allows Portworx to apply KubeVirt-specific logic when processing the volume.

Virtual Machines

In a Kubernetes cluster, pods serve as the fundamental deployment units, encapsulating containers and their associated
resources. Similarly, in a virtualization environment, virtual machines (VMs) act as the primary deployment units, encapsulating
an operating system, applications, and the necessary resources to function independently. However, unlike pods, VMs bring
a unique set of storage requirements and challenges due to their need for persistent, high-performance storage that can
support complex workloads and maintain state across reboots and migrations.

http://portworx.io/app

REFERENCE ARCHITECTURE

24

In this section, we will delve into the crucial relationship between VMs and storage within an OpenShift Virtualization
environment. We’ll examine how storage underpins the reliability, performance, and scalability of VMs, and explore the various
storage options and best practices available to ensure your virtualized workloads operate smoothly. Understanding this
relationship is key to designing a robust and efficient infrastructure that meets the demands of modern applications running in
virtualized environments.

Virtual Machine Templates

Red Hat OpenShift provides default templates for quickly deploying virtual machines within a cluster. However, these
templates do not include the specific configurations necessary for Portworx. To ensure compatibility and optimal performance,
Portworx recommends creating custom virtual machine templates that incorporate the configuration guidelines outlined in this
section.

Portworx utilizes an open-source solution called “Storage Orchestrator Runtime for Kubernetes” (STORK). STORK is designed
to optimize the scheduling of pods by ensuring they are placed on nodes where their data is locally available. By co-locating
data and running containers on the same node, STORK improves storage performance, resulting in faster and more consistent
access to data.

Given how STORK manages placement decisions, Portworx recommends adding the following annotation to your virtual
machine templates when running OpenShift 4.14 or higher:

 dataVolumeTemplates:
 - metadata:
 annotations:
 cdi.kubevirt.io/storage.usePopulator: "false"

This annotation allows Portworx to either place virtual machines on the same node as a Portworx replica or to live migrate
the VM to a node with a Portworx replica. Without this annotation, virtual machines may not be co-located with their data,
requiring them to use the physical network to access their VM disks, which can degrade performance.

Additionally, it is crucial to ensure that the following annotation is NOT included in the virtual machine template:

dataVolumeTemplates:
 - metadata:
 annotations:
 cdi.kubevirt.io/storage.bind.immediate.requested=true

This annotation overrides the WaitForFirstConsumer binding mode in the virtual machine storage class and should be avoided
to maintain optimal performance and proper data locality.

REFERENCE ARCHITECTURE

25

An eviction strategy should also be set on the virtual machines if they are to be live migrated during a maintenance operation.
This is set with an eviction strategy on the virtual machine.

spec:
 template:
 spec:
 evictionStrategy: LiveMigrateIfPossible

Day Two Disk Operations

Day two operations encompass the ongoing management and maintenance tasks that occur after the initial installation and
deployment of your OpenShift Virtualization (OSV) cluster. These operations typically involve managing virtual machines that
are already running workloads, ensuring their performance, reliability, and scalability in a production environment.

Disk Expansion

In OpenShift Virtualization, virtual machine (VM) disks are backed by PersistentVolumeClaims (PVCs). When you need to
expand a virtual machine's disk, you can do so by increasing the size of the underlying PVC. Portworx supports dynamic
resizing of PVCs, allowing you to expand the storage capacity without downtime, provided that the storage class and the
filesystem in use support resizing.

To expand a virtual machine disk:

1.	 Verify support for resizing: Ensure that the storage class used by the PVC supports volume expansion. In Portworx, this is

typically enabled by default, but it is always good to check the storage class configuration.

2.	 Update the PVC size: Modify the size of the PVC associated with the VM disk. This can be done by editing the PVC YAML to

specify a larger storage size.

3.	 Resize the filesystem (if necessary): After the PVC size is updated and the underlying storage is expanded, the filesys-

tem on the VM may also need to be resized to utilize the additional space. This step might require VM-specific commands

depending on the filesystem used by the VM. This is particularly important for Microsoft Windows based VMs.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: vm-disk-pvc-name
 namespace: virtualmachinenamespace
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 20Gi # Updated size from 10Gi to 20Gi

As mentioned in the Portworx OpenShift Bare Metal Reference Architecture, Autopilot can also be used to automatically
expand virtual machine disks that match certain capacity rules. These autopilot rules also apply to virtual machines and
can be used to reduce manual day two tasks related to disk capacity. See the Portworx on OpenShift Bare Metal Design or
Portworx documentation for more details.

REFERENCE ARCHITECTURE

26

Adding Disks

In OpenShift Virtualization, adding secondary disks to a virtual machine (VM) can provide additional storage capacity for
applications, data, or backup purposes. Secondary disks can be added to a VM either dynamically (hot-plugged) or statically
(requiring the VM to be powered off), depending on the disk bus type and the underlying capabilities of the VM's operating
system.

The disk interface determines how a disk is connected to the VM. In OpenShift Virtualization, common interface types include
VirtIO, SATA, and SCSI. The choice of bus type affects whether the disk can be hot-plugged (added or removed while the VM
is running) or if the VM needs to be powered off to attach the disk. Portworx recommends using the SCSI interface to take

advantage of hot-plugging disks.

Interface Type Hot-Plugging Supported Description

VirtIO No

A high-performance paravirtualized interface

designed for virtual environments. Supports hot-

plugging, making it ideal for dynamic workloads

requiring additional storage without downtime. Note:

Windows requires additional drivers to use this type.

SCSI Yes

Provides support for advanced storage features like

multipathing. Supports hot-plugging, allowing disks to

be added or removed without powering off the VM.

SATA No

Offers compatibility with a wide range of operating

systems but does not support hot-plugging. Disks

require the VM to be powered off before they can be

added or removed.

TABLE 2 OpenShift Disk Interface Types

REFERENCE ARCHITECTURE

27

The disks can be added from the VirtualMachines tab of the OpenShift console or by using the virtctl command line utility.

FIGURE 9 OpenShift Add Disks Menu

After adding additional disks to the virtual machines, verify that the disk is visible from the virtual machine and that the
filesystem is available.

Configuring Shared Disks

As of the current Portworx version, shared volumes for use cases such as Windows Failover Clustering are not supported in
OpenShift Virtualization when using filesystem mode. This limitation exists because shared volumes require block storage
with ReadWriteMany (RWX) access mode to function correctly across multiple nodes in a cluster. Filesystem-based volumes,
which are designed for file-level access, do not provide the necessary block-level access needed for shared storage
scenarios. Therefore, to support features like Windows Failover Clustering or any other application that requires shared block
storage, volumes must be configured in block mode with RWX access. Since Portworx currently supports RWX volumes only in
filesystem mode, shared volumes for these specific use cases are not feasible at this time.

REFERENCE ARCHITECTURE

28

Snapshots
Snapshots are a powerful feature in OpenShift Virtualization that allow you to capture the state of a virtual machine's data
volume at a specific point in time. This functionality is particularly useful for scenarios such as testing, development, and
quickly recovering from user errors by rolling back to a known good state. However, it is important to understand the proper
configuration and limitations of snapshots to use them effectively in your virtualization environment.

To use snapshots in OpenShift Virtualization, you first need to deploy a VolumeSnapshotClass. A VolumeSnapshotClass
provides the necessary configurations and parameters to create snapshots of PersistentVolumeClaims (PVCs) in your
Kubernetes cluster. It defines the driver and the snapshotter backend used to create the snapshots, ensuring that snapshots
are handled consistently across the cluster.

Create a VolumeSnapshotClass like the YAML example below:

apiVersion: snapshot.storage.k8s.io/v1
kind: VolumeSnapshotClass
metadata:
 name: px-csi-snapclass
 annotations:
 snapshot.storage.kubernetes.io/is-default-class: "true"
driver: pxd.portworx.com
deletionPolicy: Delete
parameters:
 csi.storage.k8s.io/snapshotter-secret-name: px-user-token
 csi.storage.k8s.io/snapshotter-secret-namespace: portworx
 csi.openstorage.org/snapshot-type: local

Note: The csi.storage.k8s.io/snapshotter-secret-namespace parameter should specify the namespace where the portworx stor-

age cluster was created. If you are not using PX-Security the secret name and secret namespace parameters are not necessary.

After deploying the VolumeSnapshotClass, you can create snapshots of your PVCs as needed. These snapshots provide
a quick way to capture the state of a data volume, which can be useful for various operational scenarios such as test
environments, development workflows, or before applying potentially disruptive changes.

While snapshots provide a convenient method to preserve the state of a data volume at a particular moment, they should not
be considered a backup solution.

REFERENCE ARCHITECTURE

29

FIGURE 10 OpenShift Create Volume Snapshots

For a complete data protection and disaster recovery strategy, you must implement a backup solution that provides off-site
storage, redundancy, and long-term data retention. Further details on designing and implementing a comprehensive backup
and disaster recovery plan will be available in the Data Protection and Disaster Recovery Addendum.

By understanding the role and limitations of snapshots, you can effectively integrate them into your OpenShift Virtualization
environment as a valuable tool for quick recovery and operational efficiency, while also recognizing the need for a more robust
backup strategy to protect against data loss and ensure business continuity.

Upgrades

Upgrading a Red Hat OpenShift cluster on bare metal with Portworx as the storage layer requires planning and execution to
maintain data availability and prevent disruptions. Portworx, being a distributed storage solution, depends on multiple nodes
within the cluster to deliver redundancy, high availability, and data resilience. Consequently, it is crucial to ensure the storage
cluster’s integrity during upgrades to avoid any loss of quorum or data availability issues.

Always refer to the official Red Hat OpenShift and Portworx documentation before performing upgrades. This includes
verifying version compatibility between OpenShift and Portworx, as well as reviewing any relevant release notes or upgrade
guidelines.

When upgrading OpenShift clusters running OpenShift Virtualization, it’s essential to verify that Live Migration is functioning
correctly to keep virtual machines running smoothly during node upgrades. When a node maintenance custom resource is
added by the Node Maintenance Operator, any virtual machines that have the eviction strategy set to live migrate will be
migrated to other nodes in the cluster. Without the configuration below, set on a virtual machine, you may encounter a virtual
machine outage when taking a node offline for maintenance.

spec:
 template:
 spec:
 evictionStrategy: LiveMigrateIfPossible

REFERENCE ARCHITECTURE

30

Additionally, you should upgrade worker nodes one at a time rather than all at once. This is critical because Portworx can
only maintain replicas on a maximum of three nodes. Simultaneously upgrading all three nodes would result in virtual machine
downtime.

For additional details on upgrade considerations, please refer to the Red Hat OpenShift Bare Metal Reference Architecture or
official documentation from Red Hat or Portworx.

Migration Toolkit for Virtualization

The OpenShift Migration Toolkit for Virtualization (MTV) is a tool designed to simplify the migration of virtual machine
workloads to Red Hat OpenShift. It provides a set of tools and capabilities that enable organizations to seamlessly transition
their virtual environments from traditional virtualization platforms, such as VMware vSphere or Red Hat Virtualization (RHV),
to a modern, container-based infrastructure. By leveraging the OpenShift Migration Toolkit for Virtualization, users can
automate and orchestrate the migration process, minimizing downtime and ensuring data integrity. This toolkit is helpful for
organizations looking to modernize their IT infrastructure, consolidate workloads, and fully embrace the agility and scalability
offered by OpenShift’s Kubernetes-based architecture.

Red Hat Container Registry

The OpenShift Container Registry is a critical component for supporting the Migration Toolkit for Virtualization. MTV relies
on containerized dependencies, including the VMware Virtual Disk Development Kit (VDDK), to facilitate the migration of VM
workloads from VMware environments into OpenShift. The VDDK and other MTV dependencies must be stored in an image
registry to ensure compatibility and accessibility during migrations.

In an OpenShift environment, the OpenShift Container Registry is typically deployed by default during installation, provided
that object storage is available. However, since Portworx does not natively offer object storage, the OpenShift Container
Registry may initialize in a “Removed” state during bare metal installations, allowing the OpenShift installer to complete
successfully without configuring the registry.

To deploy the image registry without relying on object storage, you can provision a ReadWriteMany (RWX) persistent volume
and configure the image registry to a “Managed” state, using this RWX volume as the backend storage.

Portworx recommends using an RWX persistent volume to allow multiple replicas of the image registry to be deployed. This
approach ensures high availability and fault tolerance for the image registry, which is crucial for production environments.
In contrast, using ReadWriteOnce (RWO) volumes would restrict the image registry to a single replica, potentially leading to
issues with scalability and reliability, and should be avoided in production clusters. This volume should have a minimum of two
replicas to protect from a host failure.

To set the OpenShift Container Registry to “managed” run:

oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch
'{"spec":{"managementState":"Managed"}}'

REFERENCE ARCHITECTURE

31

Deploy a persistent volume with an appropriate amount of storage to house virtual machine boot images for your environment:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: registry-storage-pvc
namespace: openshift-image-registry
spec:
accessModes:
- ReadWriteMany
resources:
 requests:
 storage: 300Gi
storageClassName: px-csi-db-shared

Patch the container registry to use the persistent volume claim deployed in the previous step.

oc patch config.image/cluster -p '{"spec":{"managementState":"Managed","replicas":2,"storage":{"managementState":"Unmanag
ed","pvc":{"claim":"registry-storage-pvc"}}}}' --type=merge

Then patch the default route to the image registry.

oc patch configs.imageregistry.operator.openshift.io/cluster --patch '{"spec":{"defaultRoute":true}}' --type=merge

For the latest instructions see the official Red Hat documentation for configuring the OpenShift Container Registry on bare
metal.

In a production deployment, it is also crucial to consider that virtual machine container disks can be stored in the image
registry. This storage capability ensures that VM disks are readily accessible for efficient scaling, backup, and migration
processes within the OpenShift environment.

Storage Plans

The Migration Toolkit for Virtualization operator requires the creation of migration plans that define how resources are mapped
from a source environment, such as VMware vSphere, Red Hat OpenStack Platform (RHOSP), or Red Hat Virtualization, to
a destination like Red Hat OpenShift. These migration plans need to include mappings between the source and destination
networks, as well as storage configurations. For instance, a storage mapping involves specifying the source storage location,
like a VMware vSphere datastore, and pairing it with a corresponding Red Hat OpenShift storage class. These mappings are
essential to facilitate the seamless transfer of virtual machines from the source to the target clusters.

Portworx recommends creating a storage class specifically for the migration of virtual machines. This storage class matches
the vm-storage storage class found earlier in this document with the exception of the volumBindingMode parameter which
should be changed to “Immediate.”

REFERENCE ARCHITECTURE

32

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: mtv-storage
provisioner: pxd.portworx.com
parameters:
 repl: "3"
 sharedv4: "true"
 sharedv4_mount_options: vers=3.0,nolock
volumeBindingMode: Immediate
allowVolumeExpansion: true

When creating a storage mapping, choose this storage class shown above or a similar storage class with volumeBindingMode
set to Immediate. This storagemap can be created through the OpenShift Console or with the YAML found below and
customized for your environment.

apiVersion: forklift.konveyor.io/v1beta1
kind: StorageMap
metadata:
 name: storagemap-name
 namespace: openshift-mtv
spec:
 map:
 - destination:
 storageClass: mtv-storage # Or your custom storage class
 source:
 id: [DATASTORE_ID]
 provider:
 destination:
 apiVersion: forklift.konveyor.io/v1beta1
 kind: Provider
 name: host
 namespace: openshift-mtv
 source:
 apiVersion: forklift.konveyor.io/v1beta1
 kind: Provider
 name: [PROVIDER_NAME]
 namespace: openshift-mtv

purestorage.com 800.379.PURE

©2024 Pure Storage, the Pure Storage P Logo, FlashArray, Portworx, and the marks in the Pure Storage Trademark List are trademarks
or registered trademarks of Pure Storage Inc. in the U.S. and/or other countries. The Trademark List can be found at purestorage.com/
trademarks. Other names may be trademarks of their respective owners.

REFERENCE ARCHITECTURE

PS2704-01-en 12/24

FIGURE 11 OpenShift Migration Plans

Summary
This Portworx with Red Hat OpenShift Virtualization Reference Architecture Addendum provides supplemental design
guidance for integrating Red Hat OpenShift Virtualization with Portworx Enterprise in bare metal environments. Expanding on
the foundational architecture outlined in the “Red Hat OpenShift with Portworx on Bare Metal” reference architecture, this
document offers an approach to managing both virtualized and containerized workloads in a unified Kubernetes platform.

The architecture enables organizations to modernize existing virtualization infrastructures by migrating traditional workloads
to a cloud-native environment without compromising on performance or flexibility. By leveraging Portworx enterprise-grade
storage solutions, this design delivers scalability, security, and high availability, ensuring that virtual machines (VMs) and
containers can coexist seamlessly within a single infrastructure.

Key features of this architecture include support for live migration of virtual machines, automated storage provisioning, and
integration with Portworx’s advanced storage capabilities for high-performance workloads. This document outlines critical
considerations for storage configuration, performance optimization, and capacity planning, offering best practices for
setting up ReadWriteMany (RWX) storage for live migrations, managing persistent volumes, and scaling the infrastructure.
Additionally, the addendum addresses operational factors such as snapshot management, upgrades, and the use of the
OpenShift Migration Toolkit for Virtualization (MTV) for efficient migration from legacy platforms.

By adopting this architecture, organizations can future-proof their infrastructure, drive digital transformation, and achieve
consistent operational efficiency across both virtualized and containerized environments.

https://www.purestorage.com
tel://18003797873
https://www.linkedin.com/company/pure-storage
https://www.youtube.com/user/purestorage
https://www.facebook.com/PureStorage
mailto:info%40purestorage.com?subject=
https://www.purestorage.com/content/dam/pdf/en/legal/external-trademark-list.pdf
https://www.purestorage.com/content/dam/pdf/en/legal/external-trademark-list.pdf
https://twitter.com/purestorage
https://www.purestorage.com/docs.html?item=/type/pdf/subtype/doc/path/content/dam/pdf/en/reference-architectures/ra-portworx-red-hat-openshift-bare-metal.pdf

	Introduction
	Target Use Cases
	Technology Overview
	Design and Architecture
	Design Considerations
	Templates and Boot Images
	Snapshots
	Portworx Storage Classes
	Default Storage Class
	Data Volumes
	Storage Profiles
	Container Data Import Scratch Space
	Virtual Machine State Storage Classes
	File System Overhead
	Storage Checkup
	High Availability
	Live Migration
	Performance
	Networking
	Persistent Volume Claims
	Virtual Machines
	Upgrades
	Migration Toolkit for Virtualization

	Summary

