

Portworx
Reference Architecture
RKE2 on VMware

Executive Summary

Modern applications are built using containers and orchestrated by Kubernetes, but they still
need a layer of persistence. SUSE Rancher is an industry leading hybrid cloud application
platform powered by Kubernetes, bringing together tested and trusted services to reduce the
friction of developing, modernizing, deploying, running, and managing applications. It delivers
a consistent experience across public cloud, on-prem, hybrid cloud, or edge architecture.

Rancher Kubernetes Engine RKE2 is SUSE Rancher's fully conformant Kubernetes
distribution focused on security and compliance. To run stateful applications on RKE2,
organizations need a robust data services platform like Portworx®, which provides features
such as replication and high availability, security and encryption, capacity management,
disaster recovery, and data protection to RKE2 deployments. By adopting RKE2 with Portworx,
organizations can streamline their modernization journeys while avoiding the need to dedicate
resources to designing and managing a custom Kubernetes storage layer.

Version 1.0 Page 1 of 36

Table of Contents

Executive Summary...1
1. About this document..3
2. Value proposition.. 3

2.1. Benefits of Portworx... 3
2.2. Benefits of running Portworx on RKE2 with vSphere... 4
2.3. Target use cases..4

3. Planning and architecture overview.. 4
3.1. Reference architecture high level design...4

4. Design considerations... 9
4.1. RKE2..9
4.2. Prerequisites.. 9
4.3. Networking...9
4.4. Storage...9
4.5. Implementing high availability.. 10
4.6. Deployment model.. 11
4.7. Resource considerations... 11
4.8. Performance considerations.. 12
4.9. Security...14
4.10. Monitoring..16
4.11. Installation methods and tooling..18

5. Operational considerations... 21
5.1. Post installation validation...21
5.2. Scaling Portworx.. 21
5.3. Backup and recovery... 22
5.4. Upgrading Portworx...23
5.5 Upgrading RKE2...28
5.6. Logging and monitoring...28

6. Application considerations...29
6.1. Application HA.. 29
6.2. Portworx Images..30
6.3. Monitoring during the installation...31
6.4. Validating post installation: checking cluster operators, cluster version and nodes.............................32
6.5. Troubleshooting commands.. 32

Appendix A…….. 34
Legal Notices and Attributions... 36

Version 1.0 Page 2 of 36

1. About this document

This Portworx Reference Architecture provides a validated design and deployment model for running Portworx on
RKE2 within a vSphere environment. It is intended for Kubernetes Administrators and Cloud Architects who have
experience with Portworx. Portworx recommends that readers have a good understanding of RKE2 concepts, with
familiarity in Kubernetes usage.

The document is organized into the following three technical sections:

● Planning and architecture overview

This section provides a high-level architecture overview of deploying Portworx on RKE2. It covers the requirements
for storage and storageless nodes in RKE2, along with recommended configurations for vSphere Datastores.

● Design considerations

This section provides detailed requirements and recommendations to be considered during the design phase. It
covers RKE2 requirements, networking, capacity planning, high availability, resource and performance
considerations, as well as security and monitoring.

This section concludes with a recommended Portworx installation template.

● Operations considerations

This section focuses on “day 2ˮ best practices following the deployment of Portworx. It includes guidance on
validating the Portworx installation, observability, scaling Portworx, backup and recovery techniques, and best
practices on upgrading Portworx and RKE2. Additionally, it provides instructions on checking Portworx logs.

2. Value proposition

2.1. Benefits of Portworx

Traditional storage solutions provide a basic Container Storage Interface CSI driver connector to manage stateful
applications in Kubernetes environments. However, CSI connectors have several limitations and lack the robustness
required for high availability.

Portworx offers a superior alternative by accelerating time to revenue, delivering data resiliency, and agility at
enterprise scale for Kubernetes storage and databases. This translates into improved productivity for platform
engineering teams.

Portworx offers the following key advantages:

* Custom Resources: Enables the storage aware pod scheduling by co-locating the pod and volume together for
optimal performance.

* Automatic volume or pool adjustment based on pre-defined rules, further enhancing the efficiency.

Portworx storage services provide elastic scalability, industry-leading availability, and self-service access to storage
for Kubernetes environments. With integrated storage management features such as rule-based automation,
thin-provisioning allocation and flexibility for multi-cloud, hybrid-cloud, and on-premises deployments, Portworx
delivers unmatched flexibility and reliability for modern infrastructure.

Version 1.0 Page 3 of 36

2.2. Benefits of running Portworx on RKE2 with vSphere

As part of their digital transformation efforts, organizations are modernizing their applications and infrastructure by
adopting containers and Kubernetes for application management, while leveraging a solution like RKE2 for
infrastructure. RKE2 allows organizations to benefit from fully automated operations, a consistent experience across
all environments, and self-service provisioning for developers. This approach empowers teams to collaborate
effectively and accelerate the transition from development to production.

RKE2 clusters can be provisioned using two methods:the SUSE Rancher UI or a Cluster configuration file. For more
details, refer to the RKE2 Cluster Configuration Reference | RKE2.

Portworx enhances RKE2 by adding a robust, secure, highly available, and scalable data management layer, which
allows applications to seamlessly consume storage, simplifying data management, and boosting operational
efficiency.

2.3. Target use cases

This document provides guidelines and best practices to deploy Portworx on RKE2, specifically on workload
clusters (deployment on the RKE2 admin cluster is not anticipated).

By following the recommendations in this document, RKE2 users can deploy any type of stateful application using
Portworx. While the scope of this document does not include application-specific recommendations,the deployment
approach described is designed to provide a stable and reliable storage solution suitable for any application
requiring persistent storage.

3. Planning and architecture overview

3.1. Reference architecture high level design

The diagram below illustrates the high level design of the Portworx reference architecture deployed on RKE2 within
a vSphere environment:

Version 1.0 Page 4 of 36

https://ranchermanager.docs.rancher.com/reference-guides/cluster-configuration/rancher-server-configuration/rke2-cluster-configuration

By implementing this design, Platform engineering teams can automate the provisioning of a well defined
architecture following best practices. It incorporates key features such as high availability, operations management,
observability, business continuity, performance, and security.

Figure 1. High-level architecture overview

Portworx requires a minimum of three storage nodes in the cluster. However, for production environments, this
reference architecture recommends starting with a cluster size of six storage nodes.
Although a three-node Portworx cluster may perform adequately in certain environments, there are notable
advantages to deploying six storage nodes initially.

● Cluster capacity

In a three-node storage cluster, the loss of a single node results in the loss of one-third of the cluster capacity,
significantly increasing the load on the remaining two nodes until the lost node is restored.

In a six-node cluster, losing one node reduces only one-sixth of the cluster capacity, allowing the remaining five
nodes to distribute the load more evenly and maintain better performance.

● I/O load distribution

A Portworx cluster with three storage nodes may face more frequent I/O latencies during peak usage periods.

In comparison, a six-node cluster can distribute the load across additional nodes and handle I/O requests more
efficiently, reducing the risk of I/O latencies.

Version 1.0 Page 5 of 36

Based on the above recommendations, it is important to prepare RKE2 and vSphere before deploying Portworx.

Consider the following when planning your deployment:

Storage nodes

A group of six storage nodes is the minimum requirement for Portworx deployments. While fewer than six nodes
may suffice for minimal workloads, it is not recommended for production environments. Storage Nodes play a
critical role in cluster quorum formation, which is achieved when (n + 1 / 2 nodes join the cluster, where n is the
total number of storage nodes.

Key considerations for storage nodes:

● Ensure at least six nodes are present for production environment.

● If the RKE2 cluster spans multiple availability zones, distribute storage nodes evenly across zones A
minimum of three availability zones is recommended for deployments across regions in cloud
environments. For on-premises deployments, zones or rack labels can be added manually to achieve fault
tolerance.

● During installation, Portworx will set the MaxStorageNodesPerZone configuration parameter to limit the
maximum number of storage nodes it creates per zone. If additional storage nodes are needed while
scaling the cluster, you should update this field in the StorageCluster specification.

● Portworx does not support cluster autoscaling. However, horizontal scaling can be performed manually by
adding more nodes to increase storage capacity. Reducing the number of nodes is not supported.

● Apply the label portworx.io/node-type:storage to all storage nodes to enable Portworx to automatically
provision storage for newly added nodes.

● Run hyperconverged applications on these nodes to achieve high performance levels.

● Each node must have a minimum of 8 CPU cores and 16 GB of RAM. For more information about the CPU
and memory requirements, refer to the Resource considerations section.

Storageless nodes (optional)

Storageless nodes are an optional group of nodes that can be added to a Portworx cluster for specific use cases.

● There is no defined minimum number of storage nodes required.

● Can be associated with a cluster autoscaler, allowing dynamic scaling to meet fluctuating workload
demands.

● Apply the label portworx.io/node-type:storageless to all nodes so that Portworx can automatically
recognize and classify them as storageless.

● Can be used in a dynamic compute environment, where the number of compute nodes can elastically
increase or decrease based on workload requirements.

● Applications running on these nodes access storage through the cluster network, utilizing storage available
on the storage nodes.

Version 1.0 Page 6 of 36

● In environments with a growing number of storageless nodes, it is critical to monitor performance closely. A
high number of storageless nodes can place excessive load on storage nodes, potentially impacting
application performance.

● Each node must have at least 8 CPU cores and 16 GB of RAM. For more details on the resource
requirements, refer to the Resource considerations section.

vSphere API

Portworx has integrations with the vSphere API to dynamically manage and provision block-storage automatically.
This functionality requires a vCenter service-account for Portworx to perform these operations.

Data Stores

When RKE2 is deployed on VMWare/vSphere,itʼs important to plan not only for cluster and node capacity but also to
appropriately size the shared VMFS datastores that Portworx will use. The initial selection of vSphere datastore
sizes and Portworx pool sizes should allow for future pool expansions with ease. A Portworx pool can be expanded
using two methods:

● Adding a new disk Portworx creates a new VMDK and adding it to the pool.

● Resizing all the existing disks VMDKs within the pool.

Portworx recommends resizing existing disks within a pool for expansion, as this method is faster and efficient.
Unlike adding new disks, resizing doesn't require data redistribution, which is an I/O intensive process that takes
time proportional to the amount of data needing redistribution.

Following are the guidelines on planning and provisioning vSphere Datastores for Portworx to align with the resizing
disk strategy:

● Provision multiple and large sized datastores which can be expanded in the future. This approach
minimizes the effort involved in managing VMFS datastore sizing.

○ Having larger datastores avoids limitations on the maximum size of disk Portworx can create on
them.

○ Choose fewer large datastores, such as six datastores of 16TiB, instead of many smaller
datastores like 12 datastores of 8TiB.

○ By default, Portworx recommends thin-provisioning for cloud drives. However, customers can also
use lazyzeroedthick or eagerzeroedthick provisioning for better insight into the provisioned space.

● Expanding existing datastores is preferred over adding new ones, as it avoids the need for performing a
Storage DRS and the rebalancing of VMDKs.

● Portworx recommends limiting Datastore usage to a single Portworx cluster to predict the appropriate initial
datastore size. Do not share datastores across multiple Portworx clusters.

● Portworx supports both Compute and Storage vMotions.

Storage Pools

Portworx recommends configuring a single pool per node, consisting of 6 drives.

Version 1.0 Page 7 of 36

https://docs.portworx.com/portworx-enterprise/reference-architectures/auto-disk-provisioning/vsphere/operations-guide
https://docs.portworx.com/portworx-enterprise/platform/kubernetes/gcp-anthos/install/anthos#step-1-vcenter-user-for-portworx
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.storage.doc/GUID-4C0F4D73-82F2-4B81-8AA7-1DD752A8A5AC.html#:~:text=format%20to%20another.-,Thick%20Provision%20Lazy%20Zeroed,-Creates%20a%20virtual

● This can be achieved by specifying 6 different cloud drive entries in the StorageCluster specification,
ensuring all disks have the same size and type. The example demonstrates creating a 3TiB storage pool
per node, with each pool containing 6 disks:

cloudStorage:
 deviceSpecs:
 - type=thin,size=500
 - type=thin,size=500
 - type=thin,size=500
 - type=thin,size=500
 - type=thin,size=500
 - type=thin,size=500
 journalDevice: type=thin,size=3

● Dividing capacity across multiple drives in a pool enables future pool expansions through simple disk
resizing, instead of adding disks.

○ This approach ensures a non-disruptive ‘resizeʼ operation, which will be the only available method
in the next-generation px-storev2 backend.

○ With multiple disks in a single pool, while expanding a pool, smaller incremental resize is required
on the VMDKs which are spread out across datastores.

○ If a datastore hosts a large single disk, there is a high risk that the datastore may lack enough
space to resize that single disk to meet the pool expansion requirement.

○ However, multiple smaller disks in a pool increases the likelihood that the datastore can
accommodate these incremental resizes required on the disk.

○ The alternative expansion strategy–dding a new disk to the pool–is a more expensive and time
consuming operation than resizing existing disks due to the data movement it requires.

○ It is important to note that a Portworx pool supports a maximum of six disks. Therefore, dividing
capacity among multiple disks not only facilitates smoother expansions but also optimizes
resource utilization.

Version 1.0 Page 8 of 36

4. Design considerations

4.1. RKE2

The minimum required version of RKE2 for this reference architecture is RKE2 1.28.8 or newer. For information on
the currently supported versions of RKE2, refer to the SUSE Rancher Manager documentation.

Ensure that the RKE2 version is compatible with the Portworx version by reviewing the Prerequisites for RKE2 -
Portworx Documentation and verifying kernel compatibility in the Supported Kernels - Portworx Documentation.

4.2. Prerequisites

Before installing Portworx on RKE2, ensure that all prerequisite steps outlined in the above section 4.1 are
completed.

4.3. Networking

Portworx recommends a network bandwidth of 10 Gbps, with a minimum requirement of 1Gbps and latency under
10 ms between nodes.

By default, RKE2 keeps all ports open among worker nodes. However, if your network uses a specific firewall
configuration, ensure that the ports listed in the “East-to-Westˮ section of the Prerequisites for RKE2 - Portworx
Documentation are open for node-to-node communication.

Additionally, the Telemetry feature utilizes limited-outbound connectivity. The destinations for this connectivity are
specified in the “Outboundˮ section of the Prerequisites for RKE2 - Portworx Documentation and must be reachable
from all cluster nodes.

4.4. Storage

This section provides guidelines for capacity planning in your Portworx cluster.

It covers three key aspects:

● Initial cluster capacity
● Storage node capacity sizing
● vSphere Datastore sizing

Initial Cluster Capacity

Consider the following factors considered when planning the initial capacity for your Portworx cluster:

● Number of volumes PVCs in the cluster
● Average size of volumes
● Number of nodes
● Replication factor: Portworx recommends a replication factor of 2 or 3. This setting provides redundancy to

protect against single volume or pool failures and include IO optimizations that enhance performance.
● Buffer for Local Snapshots

Below are two examples demonstrating how to calculate the initial cluster capacity:

Version 1.0 Page 9 of 36

https://www.suse.com/suse-rancher/support-matrix/all-supported-versions/rancher-v2-9-4/
https://docs.portworx.com/portworx-enterprise/platform/kubernetes/rancher/before-you-begin
https://docs.portworx.com/portworx-enterprise/platform/kubernetes/rancher/before-you-begin
https://docs.portworx.com/portworx-enterprise/reference/supported-kernels
https://docs.portworx.com/portworx-enterprise/platform/kubernetes/rancher/before-you-begin
https://docs.portworx.com/portworx-enterprise/platform/kubernetes/rancher/before-you-begin
https://docs.portworx.com/portworx-enterprise/platform/kubernetes/rancher/before-you-begin

Volume Size Volumes Replication Cluster Size 1.3 x Repl x Volumes x Size)

50GiB 30 3 5.85 TiB

100GiB 50 2 13 TiB

The initial cluster size is calculated by multiplying the average volume size, the number of volumes, the replication
factor, and then adding a 30% buffer to account for local snapshots.

Storage Node Capacity Sizing

After determining the cluster size, you can calculate the capacity required for each storage node using the formula:

Cluster size ÷ Number of storage nodes) + min 10%, 100 GiB

The additional buffer accounts for pool recovery in case the pool becomes full.

Using the above example:

Cluster Size Number of Storage
Nodes

Node Capacity Number of Datastores

5.85 TiB 6 1.075 TiB 3 2.2 TiB each)

13 TiB 6 2.26 TiB 3 4.6 TiB each)

vSphere Datastore Sizing

Finally, when planning the number of vSphere Datastores for your environment, keep in mind that vSphere limits the
capacity of a single datastore to 64 TB. Portworx recommends using multiple datastores rather than relying on a
single large one.

Creating multiple datastores allows for easier future expansion of existing datastores when the capacity
requirements increase.

Expanding existing datastores is preferred over adding new datastores to avoid the need for Storage DRS and
rebalancing of VMDKs.

For example, in the first scenario above, you can allocate 3 datastores, each initially sized at 2.2 TiB In the second
scenario, you can allocate 3 datastores with an initial size of 4.6 TiB.

4.5. Implementing high availability

To implement a highly available cluster, you can leverage Portworxʼs topology awareness feature. In a RKE2 cluster
running on a vSphere environment, Portworx can automatically identify topology node labels, specifically
topology.kubernetes.io/region and topology.kubernetes.io/zone. While regions and availability zones are typically

Version 1.0 Page 10 of 36

http://topology.kubernetes.io/region
http://topology.kubernetes.io/zone

used in cloud deployment,. for on-premises deployments, you can manually assign either rack or zone labels to
nodes.

Ensure that topology labels are added to each node in your RKE2 cluster. Portworx recommends placing all six
storage nodes in the same region, with two nodes in each zone. A zone in this case must be an isolated entity such
that a failure in one zone does not affect other zones.

In this scenario, Portworx will automatically distribute volume replicas across separate failure-domains. If one
domain becomes unavailable, the application can continue running in another domain where a replica of the same
volume resides.

4.6. Deployment model

This reference architecture uses a deployment model where applications can run both on both storage and
storageless nodes.

As described in the Reference architecture high level design section, the recommended approach involves creating
two separate RKE2 “Machine Pools :ˮ one for storage nodes and another for storageless nodes.

Storage nodes: The machine group for storage nodes provides a static set of nodes for hyper-converged
applications. While you can manually scale this machine group out to add more storage nodes as needed,scaleing
back is not automated. Storage nodes can only be removed manually from the Portworx cluster.

Storageless nodes: On the other hand, with RKE2 cluster autoscaler, it is easier to automate and manage Portworx
storageless nodes in this deployment model. The optional machine group for storageless nodes benefits from the
RKE2 cluster autoscaler, enabling automated scaling based on resource consumption. This allows for easier
management and flexibility in handling cluster workloads.

For more information on configuring RKE2 for auto-scaling, refer to Cluster Autoscaler | RKE2.

4.7. Resource considerations

When designing a cluster for a specific workload, consider the following factors:

● The expected number of volumes in use at any given time.
● The average throughput or IOPS requirement of these volumes.
● The desired high availability level.
● Whether snapshots will be used.

To estimate the backend IOPS requirement, sum up the IOPS per volume, multiply by the HA level, and add a
snapshot and fragmentation overhead factor of 1.4. This total should remain below the aggregate IOPS capacity of
all storage pools across all the cluster nodes.

For vSphere deployments, each storage pool can consist of multiple VMDKs across datastores. The total IOPS
capacity is the sum of the IOPS for allVMDKs in the pool.

The table below provides two examples for reference. These sample numbers and the associated overhead focus
primarily on Write operations, as Read operations do not experience amplification.

NOTE Different workloads may exhibit varying read/write I/O patterns, which should be considered when planning
resources.

Version 1.0 Page 11 of 36

https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/manage-clusters/install-cluster-autoscaler

Number of
Volumes

Repl Factor Average IOPS Overhead Total IOPS

240 2 200 1.4 134400

300 3 200 1.4 252000

The minimum requirements for each Portworx node are 8 CPUs and 16 GB RAM. However, for high performance
workloads, Portworx recommends allocating sufficient enough RAM and CPU resources based on the expected I/O
load. For optimal performance, especially when Portworx is running alongside applications on the same virtual
machine, it is advisable to provide at least 32 CPU cores and 32 GB of RAM.

4.8. Performance considerations

Portworx is configured by default to optimize cluster performance. However, in specific scenarios (outlined in this
section), additional parameters can further enhance the overall performance of the Portworx cluster.

● Journal device

Using a dedicated journal device is recommended in all cases. Newer versions of Portworx allow improved
performance in certain scenarios when a journal device is configured. To enable this feature, include the following
configuration in the StorageCluster yaml:

kind: StorageCluster

…
 cloudStorage:
 …

 journalDeviceSpec: type=thin,size=3
…

When using a journal device, consider enabling the auto_journal I/O profile to enhance performance for volumes
with a replication factor of 1. For more details and specific use cases, refer to this article.

● Storage class auto profile

Portworx can automatically detect the optimal IO profile for an application when you set the io_profile parameter
in the storage class to auto. In this case, you must set the replication factor to 2 or 3. Below is an example of a
storage class configuration using this parameter:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: px-storage-class
provisioner: pxd.portworx.com

Version 1.0 Page 12 of 36

https://portworx.com/blog/boost-performance-with-journal-io-profile/

allowVolumeExpansion: true
parameters:
 repl: "2"
 priority_io: "high"
 io_profile: auto

● Runtime options

By default, Portworx consumes minimal CPU and memory from the virtual machines, with a maximum of 8 vCPUs
and 8 GB of memory. If your nodes have a high number of CPUs (more than 32 vCPU and large memory (greater
than 64GB, it is recommended to enable the rt_opts_conf_high runtime option to performance.

Below is an example of a StorageCluster YAML with this parameter:

apiVersion: core.libopenstorage.org/v1
kind: StorageCluster
metadata:
 name: px-cluster
 namespace: portworx

spec:
 image: portworx/oci-monitor:3.2.0
 ...
 runtimeOptions:
 rt_opts_conf_high: "1"
 …

● ‘nodiscard’ option

Certain applications, such as Kafka and Elastic, generate a high volume of discard/delete operations, which can
impact the overall performance of the Portworx cluster. To mitigate this, it is recommended to use the nodiscard
parameter

NOTE: When you enable the nodiscard parameter, data written or deleted from the filesystem is not immediately
removed from the block device. Therefore, a periodic filesystem trim operation must be run to clear the deleted data
from the block device. For more information, refer to the relevant documentation.

Below is an example of a storage class definition using the nodiscard option:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: px-storage-class
provisioner: pxd.portworx.com
allowVolumeExpansion: true

Version 1.0 Page 13 of 36

https://docs.portworx.com/portworx-enterprise/reference/cli/volume-trim

parameters:
 repl: "2"
 nodiscard: "true"

 io_profile: auto

When using the nodiscard option, Portworx recommends enabling the autofstrim option in the cluster to

periodically delete unused data blocks. For detailed instructions, refer to the Maintain volumes using Filesystem Trim
article in the Portworx documentation.

Large Clusters Considerations

For large clusters with 100 to 200 nodes, Portworx recommends additional configuration to ensure optimal
performance and stability:

1. Configure dedicated kvdb nodes:

● Reserve nodes with 32 vCPUs and 48 GB of memory for kvdb.
● Use a minimum of 3 nodes 5 nodes recommended for high availability).
● Apply the following label to the reserved nodes:

kubectl label nodes <node-name> px/metadata-node=true

2. Increase vCenter session limits:

● Adjust the session limits in vCenter to allow more connections for handling large numbers of
nodes. Ensure the vCenter Server has adequate resources (at least 16 CPUs and 32 GB of RAM.

● Update the vCenter configuration:

○ maxSessionCount = 6000
○ maxSessionsPerUser = 3000

● For detailed instructions, refer to the VMware article: vCenter Cloud Account Datacollection Fails.

3. Increase quorum timeout:

● Update the quorum timeout parameter to enhance cluster stability:

pxctl cluster options update --runtime-options "quorum_timeout_in_seconds=3600”

Important Note: For clusters larger than 200 nodes, consult your Portworx Sales team for additional guidance.

4.9. Security

Securing your Portworx cluster involves two primary factors:

1. Authorization: Protects Portworx volumes from unauthorized access.
2. Encryption: Secures data within the volumes by encrypting it.

Version 1.0 Page 14 of 36

https://docs.portworx.com/portworx-enterprise/reference/cli/volume-trim
https://knowledge.broadcom.com/external/article/312158/vcenter-cloud-account-datacollection-fai.html

Authorization

Authorization adds an additional layer of security to Portworx volumes. By leveraging industry standards, Portworx
implements Role Based Access Control RBAC to safeguard volumes against unauthorized access. Only
authenticated and authorized users can access volumes. When security is enabled, Portworx automatically
generates a user token for the ‘kubernetesʼ user by default.

To enable authorization in Portworx, add the following section spec.security.enabled:true stanza in the
StorageCluster YAML

kind: StorageCluster

…
 spec:
 …
 security:
 enabled: true
…

Once authorization is enabled, only kubernetes users can access Portworx volumes if PVCs are created using
storage classes with the authentication token (see example here). By default, ‘guest accessʼ is allowed for
pre-existing (unowned) volumes if no authentication token is included in the storage class. To disable ‘guest
access ,̓ refer to the relevant Portworx documentation.

Additionally, all future pxctl commands will require an admin token for execution. Instructions for setting this up
can be found in the Portworx documentation.

For more details and advanced configurations in multi-tenant clusters, refer to the Portworx documentation.

Encryption

Portworx recommends securing your volumes with encryption. You can apply this at the Portworx volume level or
further down the stack (for example, FlashArray).

All Portworx encrypted volumes are secured using a passphrase and are encrypted both at rest and in transit.

Portworx supports several secret stores, such as Hashicorp Vault and Vault Transit, Kubernetes Secrets, and most
public cloud provider secret stores. The complete list of supported secret store management can be found in the
Secret Store Management article inf the Portworx documentation.

For this reference architecture, Portworx uses the Hashicorp Vault secret store.

Set up Hashicorp Vault

Before deploying Portworx, you must configure your RKE2 cluster to access the Vault server using the Vault
Kubernetes authentication method. Follow the instructions in the Vault article in the Portworx documentation to
complete this configuration.

When deploying Portworx, you can add Vault as the secret store provider by including the following in the

Version 1.0 Page 15 of 36

https://docs.portworx.com/portworx-enterprise/cloud-references/security/kubernetes/shared-secret-model-operator/storageclass
https://docs.portworx.com/portworx-enterprise/cloud-references/security/kubernetes/shared-secret-model-operator/customizing-security#disable-guest-role-access
https://docs.portworx.com/portworx-enterprise/concepts/authorization/use-pxctl-security-enabled
https://docs.portworx.com/portworx-enterprise/cloud-references/security
https://docs.portworx.com/portworx-enterprise/operations/key-management
https://docs.portworx.com/portworx-enterprise/operations/key-management/vault
https://docs.portworx.com/portworx-enterprise/operations/key-management/vault#using-kubernetes-authentication-method

StorageCluster YAML

kind: StorageCluster

…
 spec:
 …

 secretsProvider: vault
 …

After deploying Portworx, you must define a cluster-wide passphrase to enable volume encryption.

Refer to the Encrypting Kubernetes PVCs with Vault article in the Portworx documentation to create the passphrase
and start using encrypted volumes with Portworx. At a minimum, this document recommends using Portworxʼs
cluster-wide encryption feature. For environments requiring additional security, such as multi-tenant clusters, refer
to the same article for advanced per-volume encryption options.

4.10. Monitoring

Portworx seamlessly integrates with the RKE2 Prometheus, offering a range of metrics to monitor the health and
performance of your Portworx cluster.
Before deploying Portworx in your RKE2 cluster, ensure that monitoring for RKE2 is enabled. For instruction, refer to
Enable Monitoring | RKE2.

Once RKE2 monitoring is enabled and Portworx is deployed, update the exportMetrics option to true in the
StorageCluster object to enable metric support:

 monitoring:

 prometheus:

 exportMetrics: true

Additionally, you must create a ServiceMonitor. Example:

apiVersion: monitoring.coreos.com/v1

kind: ServiceMonitor

metadata:

 namespace: cattle-monitoring-system

 name: portworx-prometheus-sm

 labels:

 name: portworx-prometheus-sm

 k8s-app: prometheus-operator

spec:

 selector:

 matchLabels:

 name: portworx

 namespaceSelector:

 matchNames:

 - portworx

 endpoints:

Version 1.0 Page 16 of 36

https://docs.portworx.com/portworx-enterprise/operations/key-management/vault/pvc-enc
https://ranchermanager.docs.rancher.com/how-to-guides/advanced-user-guides/monitoring-alerting-guides/enable-monitoring#enable-monitoring-for-use-without-ssl

 - port: px-api

 targetPort: 9001

To query Portworx metrics in the RKE2 Monitoring console, navigate to the Metrics page and enter any Portworx
metric, all of which start with 'px_'. For example, to monitor CPU usage in the Portworx cluster, use the metric
'px_cluster_cpu_percent'.

Prometheus information collected

A comprehensive list of generated Portworx metrics is documented in the Portworx Metrics Reference article.

AlertManager deployment

AlertManager (a component of Prometheus) deployed alongside, processes metrics and sends alerts when
specified conditions are met. Portworx provides an initial set of rules to capture common metrics-based alerts,
which can be viewed in this documentation page.

You can additionally configure user-defined alerts in RKE2 to receive standard Prometheus alerts provided by
Portworx.

NOTE:

● Active (any fired) alerts are displayed under the “Alertsˮ tab.
● To view details of Portworx Prometheus rules, run the following command:

kubectl -n portworx get prometheusrules portworx -o yaml

Portworx includes its own internal alerts based on cluster, node, drive, or volume state changes and conditions. A
complete list of alerts is available here, and they are also accessible via Prometheusmetrics.

Grafana dashboards

Portworx provides five pre-configured Grafana dashboards to monitor cluster status and performance. Portworx
recommends using the latest GA version of Grafana, with a minimum supported version of 8.5.x.

To deploy these dashboards in your Grafana instance on RKE2

Version 1.0 Page 17 of 36

https://docs.portworx.com/portworx-enterprise/reference/metrics
https://docs.portworx.com/portworx-enterprise/operations/operate-kubernetes/monitoring/monitor-portworx-cluster.html#view-provided-prometheus-rules
https://docs.portworx.com/portworx-enterprise/reference/cli/alerts

1. Use the JSON files listed in this Portworx documentation article Configure the monitoring solution.

2. Import the dashboards into your RKE2 Grafana instance.

3. If Grafana is not already installed on your RKE2 cluster, refer to the Customizing Grafana Dashboards |
RKE2 article for installation and configuration instructions.

Available Portworx Grafana dashboards:

● Internal KVDB ETCD
● Portworx Cluster
● Portworx Nodes
● Portworx Volumes
● Portworx Performance

4.11. Installation methods and tooling

Before installing Portworx on RKE2, complete the prerequisite steps outlined in the section 2.2.

Installation steps summary:

● Follow the installation guide for Portworx on RKE2.

● Once you complete the installation-wizard, a zip file containing two YAML files will be generated

○ One file to install the Portworx Operator
○ One to create the StorageCluster object, which installs Portworx.

● Apply the YAML file generated for the Portworx operator installation.

● Before deploying Portworx, create the Kubernetes secret named px-vsphere-secret in the “portworxˮ
namespace. Follow the steps outlined in this section.

Portworx dynamically creates and manages vSphere disks using the VMware API. The
px-vsphere-secret should include the vSphere API username and password credentials. Ensure that the

Version 1.0 Page 18 of 36

https://docs.portworx.com/portworx-enterprise/operations/operate-kubernetes/monitoring/monitor-portworx-cluster#configure-grafana
https://ranchermanager.docs.rancher.com/how-to-guides/advanced-user-guides/monitoring-alerting-guides/customize-grafana-dashboard
https://ranchermanager.docs.rancher.com/how-to-guides/advanced-user-guides/monitoring-alerting-guides/customize-grafana-dashboard
https://docs.portworx.com/portworx-enterprise/platform/kubernetes/rancher/install
https://docs.portworx.com/portworx-enterprise/platform/kubernetes/gcp-anthos/install/anthos-specgen#apply-the-specs
https://docs.portworx.com/portworx-enterprise/reference-architectures/auto-disk-provisioning/vsphere#step-1-vcenter-user-for-portworx

supplied credentials meet the minimum requirements specified in the Portworx documentation (step 1 of
this page).

● Use the YAML file generated by the Portworx Central installation wizard to create the StorageCluster
object.

Portworx recommends using its StorageCluster spec generator to create the initial StorageCluster spec
template. Once generated, you can incorporate this template into existing CI/CD pipelines as needed.

To align with best practices, the initial StorageCluster YAML generated by the installation-wizard should be modified

as follows:

● cloudStorage.deviceSpecs:

contains six disks in the storage pool (as discussed in the Reference architecture high level design section), all set to
provision-type thin.

● cloudStorage.journalDeviceSpec

create a 3GB journal device, also set to thin, per best practices.

● security: enabled

Enable RBAC authorization for Portworx volumes.

● secretsProvider: vault

Set to vault for encryption and security.

● vSphere credentials:

Portworx will use the px-vsphere-secret to access vSphere APi.

● vSphere configuration:

Define details for vCenter URL, port, datastore prefix, and any additional details. If the vsphere certificate
signing-authority CA is not available on the nodes, then set the “VSPHERE_INSECURE” environment variable to skip
the verification.

Below is an example of a StorageCluster YAML created using the Portworx spec generator and updated according to
the guidelines provided in this document. Some annotations have been omitted for brevity.

apiVersion: core.libopenstorage.org/v1
metadata:
 name: px-cluster-f858ead7-6624-4fb1-8d76-e2b5dc73ee71
 namespace: portworx
 annotations:
 portworx.io/install-source:
"https://install.portworx.com/?operator=true&mc=false&kbver=1.30.5%2Brke2r1&b=true&iop=6&vsp=
true&vc=dosavc.pwx.dev.purestorage.com&vcp=443&ds=PXDS01&s=%22type%3Dthin%2Csize%3D150%22&j=a

Version 1.0 Page 19 of 36

https://docs.portworx.com/portworx-enterprise/reference-architectures/auto-disk-provisioning/vsphere#step-1-vcenter-user-for-portworx
https://docs.portworx.com/portworx-enterprise/reference-architectures/auto-disk-provisioning/vsphere#step-1-vcenter-user-for-portworx
https://central.portworx.com/specGen/wizard
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.storage.doc/GUID-4C0F4D73-82F2-4B81-8AA7-1DD752A8A5AC.html

uto&ce=vsphere&c=px-cluster-f858ead7-6624-4fb1-8d76-e2b5dc73ee71&stork=true&csi=true&tel=true
&st=k8s"
spec:
 image: portworx/oci-monitor:3.2.0
 imagePullPolicy: Always
 security:
 enabled: true
 kvdb:
 internal: true
 cloudStorage:
 deviceSpecs:
 - type=thin,size=150
 - type=thin,size=500
 - type=thin,size=500
 - type=thin,size=500
 - type=thin,size=500
 - type=thin,size=500

 journalDeviceSpec: type=thin,size=3
 secretsProvider: k8s
 stork:
 enabled: true
 args:
 webhook-controller: "true"
 autopilot:
 enabled: true
 runtimeOptions:
 default-io-profile: "6"
 csi:
 enabled: true
 monitoring:
 telemetry:
 enabled: true

 prometheus:

 exportMetrics: true
 env:
 - name: VSPHERE_INSECURE
 value: "true"
 - name: VSPHERE_USER
 valueFrom:
 secretKeyRef:
 name: px-vsphere-secret
 key: VSPHERE_USER
 - name: VSPHERE_PASSWORD

Version 1.0 Page 20 of 36

 valueFrom:
 secretKeyRef:
 name: px-vsphere-secret
 key: VSPHERE_PASSWORD
 - name: VSPHERE_VCENTER
 value: "<vcenter_endpoint>"
 - name: VSPHERE_VCENTER_PORT
 value: "443"
 - name: VSPHERE_DATASTORE_PREFIX
 value: "<vcenter_datastore_prefix>"
 - name: VSPHERE_INSTALL_MODE

 value: "shared"

5. Operational considerations

5.1. Post installation validation

After deploying Portworx, perform the following steps to ensure that all components are functioning as expected:

● Ensure all Portworx pods are running.
● Confirm that the Portworx cluster is healthy and operational.
● Validate the status of the Portworx internal KVDB.
● Review the status of storage pools for the Portworx cluster provisioning.

To ensure your Portworx installation is successful, refer to the detailed command instructions in the Verify your
Portworx Installation article.

Once the Portworx installation is as successful, proceed to create your first PVC. For step-by-step instructions,
refer to the Create your First PVC article in the Portworx documentation.

5.2. Scaling Portworx

There are various reasons to scale Portworx in your environment, and different methods can be employed to scale
your deployment.

Adding Storage

Expanding storage on existing Portworx nodes, also known as vertical scaling, increases the clusterʼs capacity.
Portworx recommends using the Portworx Autopilot feature to accomplish this task.

You can create Autopilot rules to automatically increase the size of Portworx storage pools. The following types of
Autopilot rules help on managing storage pools:

● Expand every Portworx storage pool in your cluster
● Expand Portworx storage pools

Version 1.0 Page 21 of 36

https://docs.portworx.com/
https://docs.portworx.com/
https://docs.portworx.com/
https://docs.portworx.com/portworx-enterprise/operations/operate-kubernetes/autopilot

Unset

As Rancher has inbuilt prometheus, for Autopilot to pull the metrics from Rancher one

kubectl patch storagecluster px-cluster \
-n portworx \
--type='json' \
-p='[{"op": "replace", "path": "/spec/autopilot/providers/0/params/url",
"value":
"http://rancher-monitoring-prometheus.cattle-monitoring-system.svc.cluster.loca
l:9090"}]'

Adding Storage Nodes

In certain scenarios, you may need to add more storage nodes to your cluster. This is also known as horizontal
scaling out the cluster.

Portworx recommends adding a new node in your cluster when any existing node consistently reaches 80% IOPS or
80% CPU utilization. Additionally, monitoring the latency of storage pools is important, as high latency can also
indicate the need for a new node.

To scale out a cluster, add more storage nodes. Portworx will automatically deploy any newly added nodes,
integrating them seamlessly into the cluster.

Adding Compute Storageless) Nodes

As mentioned in the Reference architecture high level design section, if you plan to run stateful applications on
compute nodes (nodes without storage), Portworx recommends creating a separate machine group in your RKE2
cluster, and automatically adding the label portworx.io/node-type: storageless.

Storageless nodes can be created or removed as needed without impacting the overall health of the Portworx
cluster.

Portworx will automatically remove a storageless node from the cluster 20 minutes after its corresponding VM is
deleted.

5.3. Backup and recovery

For backup and recovery of your cluster, Portworx recommends PXBackup, which is a complete Kubernetes
backup solution fully integrated with Portworx.

PXBackup is Kubernetes-aware, meaning it understands Kubernetes resources such as statefulsets, secrets,
configmaps, PVCs, and Portworx volumes, enabling granular backups and restores as needed.

To optimize backups, Portworx recommends creating separate backup schedule policies for each namespace in
your cluster and space out these schedules throughout the day. This minimizes the chances of backups interfering
with regular I/O loads in the cluster.

Version 1.0 Page 22 of 36

http://rancher-monitoring-prometheus.cattle-monitoring-system.svc.cluster.local:9090
http://rancher-monitoring-prometheus.cattle-monitoring-system.svc.cluster.local:9090
http://portworx.io/node-type
https://docs.portworx.com/portworx-backup-on-prem

For more information, refer to the PXBackup documentation.

5.4. Upgrading Portworx

Pre-Upgrade Checks

Before upgrading Portworx, it is important to verify the health of the current deployment:

● Ensure all pods in the portworx namespace are in a running state:

❯ kubectl -n portworx get pods

NAME READY STATUS RESTARTS AGE

autopilot-67664dbf87-fxxkh 1/1 Running 0 87m

portworx-api-bk6p2 2/2 Running 0 36m

portworx-api-nn657 2/2 Running 0 36m

portworx-api-px78w 2/2 Running 0 36m

portworx-kvdb-cw8pc 1/1 Running 0 84m

portworx-kvdb-mf8gt 1/1 Running 0 84m

portworx-kvdb-zklhb 1/1 Running 0 84m

portworx-operator-755f7cf75c-452g9 1/1 Running 0 37m

portworx-pvc-controller-759968569d-79qxv 1/1 Running 0 87m

portworx-pvc-controller-759968569d-fptkm 1/1 Running 0 87m

portworx-pvc-controller-759968569d-xt2hd 1/1 Running 0 87m

px-cluster-f858ead7-6624-4fb1-8d76-e2b5dc73ee71-2zxvx 1/1 Running 0 87m

px-cluster-f858ead7-6624-4fb1-8d76-e2b5dc73ee71-fc2jm 1/1 Running 0 87m

px-cluster-f858ead7-6624-4fb1-8d76-e2b5dc73ee71-kdv98 1/1 Running 0 87m

px-csi-ext-79c84ff97b-45t4x 4/4 Running 0 36m

px-csi-ext-79c84ff97b-fr2gj 4/4 Running 0 36m

px-csi-ext-79c84ff97b-wrbgd 4/4 Running 0 36m

px-telemetry-phonehome-hqn2g 2/2 Running 0 84m

px-telemetry-phonehome-lgwmq 2/2 Running 0 84m

Version 1.0 Page 23 of 36

https://docs.portworx.com/portworx-backup-on-prem/concepts

px-telemetry-phonehome-s25p8 2/2 Running 0 84m

px-telemetry-registration-7fc9d684bc-78l8f 2/2 Running 0 84m

stork-6b86b584bd-jtxhg 1/1 Running 0 87m

stork-6b86b584bd-nnn98 1/1 Running 0 87m

stork-6b86b584bd-rklm5 1/1 Running 0 87m

stork-scheduler-656b6486bd-dsv2b 1/1 Running 0 87m

stork-scheduler-656b6486bd-kxw2k 1/1 Running 0 87m

stork-scheduler-656b6486bd-thhsf 1/1 Running 0 87m

Ensure all pods are in a 1/1 state, meaning they are running and ready. If any pod is not in this state, fix the pod(s)
before proceeding with the upgrade. Refer to the Troubleshooting section in this document or contact Portworx
support for assistance.

● Ensure all RKE2 nodes are in a ready state:

>kubectl get no

NAME STATUS ROLES AGE VERSION

ra-RKE2-vsphere-k8s-master-pwcgn-56fsw Ready control-plane,etcd,master 11m

v1.30.5+rke2r1

ra-RKE2-vsphere-k8s-master-pwcgn-8sbz8 Ready control-plane,etcd,master 11m

v1.30.5+rke2r1

ra-RKE2-vsphere-k8s-master-pwcgn-xnw7c Ready control-plane,etcd,master 15m

v1.30.5+rke2r1

ra-RKE2-vsphere-ks-worker-dx7qb-74dnb Ready worker 7m58s

v1.30.5+rke2r1

ra-RKE2-vsphere-ks-worker-dx7qb-8gsdn Ready worker 9m47s

v1.30.5+rke2r1

ra-RKE2-vsphere-ks-worker-dx7qb-bplxw Ready worker 9m41s

v1.30.5+rke2r1

Ensure that all nodes are in Ready state before starting the Portworx upgrade. If any node is not in the 'Ready' state,
resolve the issue before proceeding.. For assistance, refer to the RKE2 documentation or contact SUSE support.

● Ensure all Portworx nodes are up and running, and in the Ready state.

● You can then run the following commands to check Portworx status. There is no need to pass the
ADMIN_TOKEN, if security is not enabled.

Version 1.0 Page 24 of 36

❯ ADMIN_TOKEN=$(kubectl -n portworx get secret px-admin-token \
 --template='{{index .data "auth-token" | base64decode}}')

❯ PX_POD=$(kubectl get pods -l name=portworx -n portworx \
 -o jsonpath='{.items[0].metadata.name}')

❯ kubectl -n portworx exec -it $PX_POD -- /opt/pwx/bin/pxctl context create \
 admin --token=$ADMIN_TOKEN

Context created.

❯ kubectl -n portworx exec $PX_POD -- /opt/pwx/bin/pxctl status

Status: PX is operational

Telemetry: Disabled or Unhealthy

Metering: Disabled or Unhealthy

License: Trial (expires in 31 days)

Node ID: 3ba0db47-7588-42ce-ae03-48c457a7ff77

 IP: 10.13.25.177

 Local Storage Pool: 1 pool

 POOL IO_PRIORITY RAID_LEVEL USABLE USED STATUS ZONE REGION

 0 HIGH raid0 2.9 TiB 16 GiB Online default default

 Local Storage Devices: 6 devices

 Device Path Media Type Size Last-Scan

 0:1 /dev/sdg STORAGE_MEDIUM_SSD 500 GiB 06 Nov 24 15:35 UTC

 0:2 /dev/sdh STORAGE_MEDIUM_SSD 500 GiB 06 Nov 24 15:35 UTC

 0:3 /dev/sdi STORAGE_MEDIUM_SSD 500 GiB 06 Nov 24 15:35 UTC

 0:4 /dev/sdj STORAGE_MEDIUM_SSD 500 GiB 06 Nov 24 15:35 UTC

 0:5 /dev/sde STORAGE_MEDIUM_SSD 500 GiB 06 Nov 24 15:35 UTC

 0:6 /dev/sdf STORAGE_MEDIUM_SSD 500 GiB 06 Nov 24 15:35 UTC

 total - 2.9 TiB

 Cache Devices:

 * No cache devices

 Kvdb Device:

Version 1.0 Page 25 of 36

 Device Path Size

 /dev/sdk 32 GiB

 * Internal kvdb on this node is using this dedicated kvdb device to store its data.

 Journal Device:

 1 /dev/sdd1 STORAGE_MEDIUM_SSD 3.0 GiB

Cluster Summary

 Cluster ID: px-cluster-f858ead7-6624-4fb1-8d76-e2b5dc73ee71

 Cluster UUID: 40e8b70c-e3f0-4e66-a82b-1e5c529f7f66

 Scheduler: kubernetes

 Total Nodes: 3 node(s) with storage (3 online)

 IP ID SchedulerNodeName Auth
 StorageNode Used Capacity Status StorageStatus Version Kernel OS

 10.13.25.179 4bcc5da8-773b-4c5c-8063-cf99a331191d ra-RKE2-vsphere-ks-worker-dx7qb-bplxw Disabled

 Yes 16 GiB 2.9 TiB Online Up 3.2.0.0-2ded0fe 5.15.0-100-generic
Ubuntu 22.04.3 LTS

 10.13.25.177 3ba0db47-7588-42ce-ae03-48c457a7ff77 ra-RKE2-vsphere-ks-worker-dx7qb-74dnb Disabled

 Yes 16 GiB 2.9 TiB Online Up (This node) 3.2.0.0-2ded0fe 5.15.0-100-generic
Ubuntu 22.04.3 LTS

 10.13.25.176 01e42b1e-1297-4a98-9d01-323659814b03 ra-RKE2-vsphere-ks-worker-dx7qb-8gsdn Disabled

 Yes 16 GiB 2.9 TiB Online Up 3.2.0.0-2ded0fe 5.15.0-100-generic
Ubuntu 22.04.3 LTS

 Warnings:

Global Storage Pool

 Total Used : 48 GiB

 Total Capacity : 8.8 TiB

Similar to previous steps, ensure all Portworx nodes are online and verify that no errors or warnings are
displayed in the output of the above command. If you encounter any errors, refer to the Troubleshooting
section in this document or contact Portworx support for assistance.

● Run the following command to ensure all Portworx KVDB instances are in a running state:

Version 1.0 Page 26 of 36

❯ kubectl -n portworx exec $PX_POD -- /opt/pwx/bin/pxctl service kvdb members

Kvdb Cluster Members:

ID PEER URLs CLIENT URLs LEADER
HEALTHY DBSIZE

4bcc5da8-773b-4c5c-8063-cf99a331191d [http://portworx-1.internal.kvdb:9018] [http://10.13.25.179:9019]
true true 308 KiB

01e42b1e-1297-4a98-9d01-323659814b03 [http://portworx-2.internal.kvdb:9018] [http://10.13.25.176:9019]
false true 316 KiB

3ba0db47-7588-42ce-ae03-48c457a7ff77 [http://portworx-3.internal.kvdb:9018] [http://10.13.25.177:9019]
false true 304 KiB

The output must meet the following criteria:

● Display 3 KVDB members.
● One member must be designated as the leader.
● All members must be in a healthy state.

If you encounter any errors, check the Troubleshooting section in this document or contact Portworx support for
assistance.

Operator Upgrade

After completing all the above prerequisites, the first component to upgrade is the Portworx operator.

You should manually upgrade the operator to the latest version using kubectl:

1. After completing the upgrade, run the following command to confirm if Portwox operator is in a running
state:

❯ kubectl -n portworx get pod -l name=portworx-operator
NAME READY STATUS RESTARTS AGE

portworx-operator-755f7cf75c-452g9 1/1 Running 0 39m

Portworx Upgrade

After upgrading the Operator, proceed to upgrading Portworx and all its associated components. Portworx utilizes a
rolling upgrade process, upgrading one node at a time, ensuring each node is upgraded before proceeding to the
next.

Version 1.0 Page 27 of 36

To upgrade Portworx:

1. Edit the StorageCluster resource and update the Portworx image.
For example, to upgrade to release 3.2.1, modify the image entry:

 image: portworx/oci-monitor:3.2.0

2. During this upgrade process, other components such as Autopilot, Stork and CSI will also be automatically
upgraded to versions compatible with the Portworx release.

For detailed upgrade instructions, refer to the Upgrade Portworx using the Operator article in the Portworx
documentation.

 5.5 Upgrading RKE2

Before upgrading RKE2, ensure the new RKE2 version is compatible with the currently deployed Portworx version. In
some cases, you may need to upgrade Portworx before upgrading your RKE2 cluster. Refer to the supported
Kubernetes versions for details.

To ensure smooth operation during and after the RKE2 upgrade, follow these best practices:

● If the new RKE2 version introduces a new kernel, then ensure that the current Portworx version is
compatible with this new kernel version.

● Ensure that the current Portworx version is compatible with the new Kubernetes version in RKE2.

● Make sure the deployed Portworx version is compatible with the new RKE2 version you plan to use.

● Verify that the Portworx cluster is healthy.

● Ensure all three Portworx internal KVDB instances are healthy and in a running state. Portworx internal
KVDB has an associated PodDisruptionBudget PDB that requires at least two KVDB pods to be running. All
three KVDB pods must be running before starting the RKE2 upgrade to avoid node draining issues that
could block the upgrade.

If Portworx is not compatible with any of these points, upgrade Portworx to a supported version before upgrading
RKE2.

5.6. Logging and monitoring

All Portworx pods generate logs that can be viewed or retrieved using standard RKE2 commands, such as kubectl

logs. If required by Portworx support, you can increase log levels by updating the StorageCluster for each
component. For example, to enable debug-level logging for the Stork component, add the following to the

StorageCluster resource:

…

 stork:
 args:
 verbose: true

Version 1.0 Page 28 of 36

https://docs.portworx.com/portworx-enterprise/operations/operate-kubernetes/upgrade/upgrade-operator
https://docs.portworx.com/portworx-enterprise/platform/kubernetes/rancher/before-you-begin#supported-kubernetes-versions
https://docs.portworx.com/portworx-enterprise/platform/kubernetes/rancher/before-you-begin#supported-kubernetes-versions
https://kubernetes.io/docs/tasks/run-application/configure-pdb/

 webhook-controller: "true"
 enabled: true

…

To enable debug-level logging in the Portwox container, add the PX_LOGLEVEL=debug environment variable to the
StorageCluster specification:

...
 env:
 - name: PX_LOGLEVEL
 value: debug
...

To collect more details for troubleshooting Portworx, you can generate diagnostics by running the following
command on a specific node where Portworx is running:

❯ pxctl sv diags -a

This will generate a tar.gz file that can be shared with Portworx support for issue investigation. If Telemetry is
enabled, the diagnostics file is automatically uploaded to Pure1.

To enable Telemetry, follow the instructions outlined in the Portworx documentation.

6. Application considerations

All stateful applications consume one or many PVCs provided by Portworx. These PVCs should be created using
one of the default StorageClasses provided by the Portworx Operator. By default, all StorageClasses have
replication enabled. For custom StorageClasses, Portworx recommends enabling volume replication to ensure data
redundancy.

6.1. Application HA

Intra Cluster

Portworx ensures data availability through storage replication, allowing an application to access its data from a
replica node if the original node becomes unavailable. However, in the event of a node failure hosting an application
pod, the application will experience downtime until Kubernetes reschedules the pod to another healthy node within
the cluster. Thus, while storage remains accessible, the application itself may be temporarily offline. Depending on
your applicationʼs requirements, you may choose one of the following strategies:

1. HA mode: For applications that support HA mode and require zero downtime, run multiple replicas of the
application pods. This configuration ensures continuous service availability, as other replicas can handle
traffic if anode hosting one pod fails.

Version 1.0 Page 29 of 36

https://docs.portworx.com/portworx-enterprise/platform/openshift/ocp-gcp/operations/troubleshooting/enable-pure1-upgrades.html

2. Non-HA mode: For applications that can withstand temporary downtime during Kubernetes' failover
process or do not support HA mode, deploying a single replica of the application pod is sufficient.

6.2. Portworx Images

To view the list of Portworx images, visit a URL similar to the following:

https://install.portworx.com/3.2/images?kbver=1.30.5+rke2r1

The example above displays images for Portworx version 3.2.x compatible with the kubernetes version
1.30.5+rke2r1.

You can also retrieve the image list using the curl command, for example:

❯ curl -s 'https://install.portworx.com/3.2/images?kbver=1.30.5+rke2r1'
docker.io/portworx/px-enterprise:3.2.0

docker.io/portworx/oci-monitor:3.2.0

docker.io/openstorage/stork:24.3.2

docker.io/openstorage/cmdexecutor:24.3.2

docker.io/portworx/autopilot:1.3.15

docker.io/purestorage/ccm-go:1.2.2

docker.io/purestorage/realtime-metrics:1.0.29

docker.io/purestorage/telemetry-envoy:1.1.16

docker.io/purestorage/log-upload:px-1.1.29

docker.io/portworx/px-operator:24.1.3

registry.k8s.io/pause:3.1

registry.k8s.io/kube-controller-manager-amd64:v1.30.5

registry.k8s.io/kube-scheduler-amd64:v1.30.5

docker.io/portworx/portworx-dynamic-plugin:1.1.1

docker.io/nginxinc/nginx-unprivileged:1.25

registry.k8s.io/kube-scheduler-amd64:v1.21.4

registry.k8s.io/sig-storage/csi-node-driver-registrar:v2.12.0

registry.k8s.io/sig-storage/csi-provisioner:v3.6.1

registry.k8s.io/sig-storage/csi-resizer:v1.12.0

registry.k8s.io/sig-storage/csi-snapshotter:v8.1.0

registry.k8s.io/sig-storage/snapshot-controller:v8.1.0

quay.io/prometheus/prometheus:v2.54.1

quay.io/prometheus-operator/prometheus-operator:v0.75.0

quay.io/prometheus-operator/prometheus-config-reloader:v0.75.0

quay.io/prometheus/alertmanager:v0.27.0%

the following images may also be needed

docker.io/openstorage/csi-attacher:v1.2.1-1

For more information about the list of images and instructions on uploading them to a local repository, refer to the
Install Portworx on bare metal air-gapped Kubernetes cluster article in the Portworx documentation.

Version 1.0 Page 30 of 36

https://install.portworx.com/3.2/images?kbver=1.30.5+rke2r1
https://docs.portworx.com/portworx-enterprise/install-portworx/kubernetes/airgapped/air-gapped-baremetal

6.3. Monitoring during the installation

After deploying Portworx, you can monitor the installation progress by checking status of the pods:

❯ kubectl -n portworx get pods

NAME READY STATUS RESTARTS AGE

autopilot-67664dbf87-fxxkh 1/1 Running 0 92m

portworx-api-bk6p2 2/2 Running 0 42m

portworx-api-nn657 2/2 Running 0 42m

portworx-api-px78w 2/2 Running 0 42m

portworx-kvdb-cw8pc 1/1 Running 0 90m

portworx-kvdb-mf8gt 1/1 Running 0 89m

portworx-kvdb-zklhb 1/1 Running 0 89m

portworx-operator-755f7cf75c-452g9 1/1 Running 0 42m

portworx-pvc-controller-759968569d-79qxv 1/1 Running 0 92m

portworx-pvc-controller-759968569d-fptkm 1/1 Running 0 92m

portworx-pvc-controller-759968569d-xt2hd 1/1 Running 0 92m

px-cluster-f858ead7-6624-4fb1-8d76-e2b5dc73ee71-2zxvx 1/1 Running 0 92m

px-cluster-f858ead7-6624-4fb1-8d76-e2b5dc73ee71-fc2jm 1/1 Running 0 92m

px-cluster-f858ead7-6624-4fb1-8d76-e2b5dc73ee71-kdv98 1/1 Running 0 92m

px-csi-ext-79c84ff97b-45t4x 4/4 Running 0 42m

px-csi-ext-79c84ff97b-fr2gj 4/4 Running 0 42m

px-csi-ext-79c84ff97b-wrbgd 4/4 Running 0 42m

px-telemetry-phonehome-hqn2g 2/2 Running 0 89m

px-telemetry-phonehome-lgwmq 2/2 Running 0 89m

px-telemetry-phonehome-s25p8 2/2 Running 0 89m

px-telemetry-registration-7fc9d684bc-78l8f 2/2 Running 0 89m

stork-6b86b584bd-jtxhg 1/1 Running 0 92m

stork-6b86b584bd-nnn98 1/1 Running 0 92m

Version 1.0 Page 31 of 36

stork-6b86b584bd-rklm5 1/1 Running 0 92m

stork-scheduler-656b6486bd-dsv2b 1/1 Running 0 92m

stork-scheduler-656b6486bd-kxw2k 1/1 Running 0 92m

stork-scheduler-656b6486bd-thhsf 1/1 Running 0 92m

Another method to monitor the installation progress is by checking the status of the StorageNodes resources:

❯ kubectl -n portworx get storagenodes
NAME ID STATUS

VERSION AGE

ra-RKE2-vsphere-ks-worker-dx7qb-74dnb 3ba0db47-7588-42ce-ae03-48c457a7ff77 Online

3.2.0.0-2ded0fe 92m

ra-RKE2-vsphere-ks-worker-dx7qb-8gsdn 01e42b1e-1297-4a98-9d01-323659814b03 Online

3.2.0.0-2ded0fe 92m

ra-RKE2-vsphere-ks-worker-dx7qb-bplxw 4bcc5da8-773b-4c5c-8063-cf99a331191d Online

3.2.0.0-2ded0fe 92m

At the end of the deployment process, when StorageNodes transition from Initializing to Online), all pods should be
running and in the “Readyˮ state, if any problems arise, refer to the troubleshooting section below.

6.4. Validating post installation: checking cluster operators, cluster version and nodes

After deploying Portworx, verify the installation by checking the cluster operators, cluster version, and node status.
Follow the steps provided in this link to verify the installation and create your first PVC using a Portworx storage
class.

6.5. Troubleshooting commands

To troubleshoot installation issues, check the logs of any failing pods for errors. For example, to troubleshoot a
specific Portworx pod in a cluster named `px-cluster-refarch-2ca0d...149a`, run the following command:

❯ kubectl -n portworx logs px-cluster-refarch-2ca0xxx4n

Other useful commands:

● Describe a pod to check the Events section for errors. The following example shows a failed image pull for
the `stork` component:

Version 1.0 Page 32 of 36

https://docs.portworx.com/portworx-enterprise/platform/kubernetes/gcp-anthos/install/anthos-specgen#verify-your-portworx-installation

❯ kubectl -n portworx describe pod stork-776979dc7b-tmq4d
Events:

 Type Reason Age From Message

 ---- ------ ---- ---- -------

 Normal Scheduled 55s default-scheduler Successfully assigned portworx/stork-776979dc7b-tmq4d to

pool-0-556f55b84d-6rkv7

 Normal Pulling 55s kubelet Pulling image "docker.io/openstorage/stork:24.3.2"

 Normal Pulled 25s kubelet Successfully pulled image "docker.io/openstorage/stork:24.3.2" in

29.848s (29.848s including waiting)

 Normal Created 25s kubelet Created container stork

● Retrieve logs from the Portworx operator pod:

❯ kubectl -n portworx logs -l name=portworx-operator --tail=9999
time="06-11-2024 17:07:10" level=info msg="Using version extracted from image name: 3.2.0"

file="util.go:591"

time="06-11-2024 17:07:10" level=info msg="shouldUseQuorumMember for node

ra-RKE2-vsphere-ks-worker-dx7qb-8gsdn: true , isQuorumMember? true" file="storagenode.go:566"

time="06-11-2024 17:07:10" level=info msg="Reconciling StorageNode" file="storagenode.go:214"

storagenode=ra-RKE2-vsphere-ks-worker-dx7qb-bplxw

time="06-11-2024 17:07:10" level=info msg="Using version extracted from image name: 3.2.0"

file="util.go:591"

time="06-11-2024 17:07:10" level=info msg="shouldUseQuorumMember for node time="06-11-2024 17:07:15"

level=info msg="Using version extracted from image name: 3.2.0" file="util.go:591"

time="06-11-2024 17:07:15" level=info msg="Using version extracted from image name: 3.2.0"

file="util.go:591"

time="06-11-2024 17:07:15" level=info msg="Using version extracted from image name: 3.2.0"

file="util.go:591"

Refer to the troubleshooting section in the Portworx documentation for more information.

For further assistance, refer to the Portworx support contact details.

Version 1.0 Page 33 of 36

https://docs.portworx.com/portworx-enterprise/operations/operate-kubernetes/troubleshooting
https://docs.portworx.com/portworx-enterprise/support/contact-support

Appendix A

How a customer setup/use of RKE2 differs

The following lists ways that the above document does not match one of our primary FSI-based customers:

- Storage

- Cloud-Drives in a pool

- Customer started with 1 cloud-drive, it has been recommended they update all their pools
to be backed by the maximum 6 cloud-drives. This has been an on-going endeavor and
to my knowledge is not yet complete

- Reason: this was an initial selection based on FACSI deployment prior to involving PX
architects.

- Datastores

- Customer has only one FlashArray, shared between multiple PX clusters (as well as other
apps), and currently they have at least 4 or more datastores dedicated for each cluster.
The datastores have a fixed (max) size of 16TiB, per their storage-team limitations.

- Reason: This is a limitation of the environment, the customer has not considered having
more than one flasharray per DC.

- High-Availability

- Not set up completely as their workload clusters exist and are connected via a single
vcenterʼs (e.g. it is shared by multiple portworx cluster in a given datacenter, which
inevitably becomes a choke point leading to low vcenter-api query performance).

- As all nodes in the cluster are in the same datacenter, topology awareness cannot be
implemented unless rack and hypervisor-based locality is utilized.

- Reason: customer wished to localize cluster on a per-site basis.

- Scaling

- Customer manually scales clusters during maintenance windows and does not utilize
auto-scaling.

- Reason: customer decision

- Resources

- I am not aware of if any resource and io-resource measurements were performed, to
determine what adequate IO behavior would be made available to PX and thus end-user
applications.

- Reason: customer initial deployment was around CSI “freeˮ version of PX and it was not
considered as things scaled several years ago, prior to these recommendations being
put together.

- Performance

Version 1.0 Page 34 of 36

- Customer does NOT utilize journal devices for Portworxʼs use anywhere in their
environment

- Reason: the necessity/recommendation of journal devices was not yet in place/available
at the time of cluster formation.

- Security

- Customer does not have px-secure enabled and I donʼt believe they are using encrypted
volumes either.

- Reason: customer aware of the limitation and has been researching implementing this.

- Observability

- Customer utilizes external third-party (datadog) tools for ingesting Portworx-generated
metrics and performance data and has their own dashboards and alerting systems
configured

- Only recently have they expressed interest in deploying/utilizing our pre-created Grafana
dashboards

- Reason: pre-existing monitoring solution (used by other apps) was chosen to fit into
environment

Version 1.0 Page 35 of 36

Legal Notices and Attributions

©2025 Pure Storage, Inc. All rights reserved.

Pure Storage, the Pure Storage P Logo, and the marks on the Pure Storage Trademark List are trademarks or
registered trademarks of Pure Storage, Inc. in the U.S. and other countries. The Pure Storage Trademark List can be
found at purestorage.com/trademarks. Other names may be trademarks of their respective owners. Use of Pure
Storage Products and Programs are covered by IP, and other terms, available at:
purestorage.com/legal/productenduserinfo.html and purestorage.com/patents.

Pure Storage products and programs are distributed under a license agreement restricting their use, copying,
distribution, and decompilation/reverse engineering. No part of this documentation, or the programs to which it
applies, may be reproduced in any form by any means without prior written authorization from Pure Storage, Inc.
and its licensors, if any.

THIS PROGRAM AND ACCOMPANYING DOCUMENTATION IS PROVIDED “AS ISˮ AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS, AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT, ARE DISCLAIMED, EXCEPT
TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

PURE STORAGE SHALL NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH
THE FURNISHING, PERFORMANCE, OR USE OF THIS PROGRAM OR DOCUMENTATION. PURE STORAGE MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PURE PRODUCTS AND/OR THE PROGRAMS DESCRIBED HEREIN AT
ANY TIME WITHOUT NOTICE.

THIS INFORMATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY AND IS NOT A COMMITMENT,
PROMISE, OR LEGAL OBLIGATION TO DELIVER ANY MATERIAL, CODE, OR FUNCTIONALITY AND SHOULD NOT BE
RELIED UPON IN MAKING PURCHASING DECISIONS OR INCORPORATED INTO ANY CONTRACT.

Note about the draft document: texts marked with this format are the guidelines present in the original RA template
document and must be removed from the final document.

Version 1.0 Page 36 of 36

http://purestorage.com/trademarks
http://purestorage.com/legal/productenduserinfo.html
http://purestorage.com/legal/productenduserinfo.html
http://purestorage.com/patents

	
	Portworx
	Reference Architecture
	
	
	
	Executive Summary
	Modern applications are built using containers and orchestrated by Kubernetes, but they still need a layer of persistence. SUSE Rancher is an industry leading hybrid cloud application platform powered by Kubernetes, bringing together tested and trusted services to reduce the friction of developing, modernizing, deploying, running, and managing applications. It delivers a consistent experience across public cloud, on-prem, hybrid cloud, or edge architecture.
	
	Rancher Kubernetes Engine (RKE2) is SUSE Rancher's fully conformant Kubernetes distribution focused on security and compliance. To run stateful applications on RKE2, organizations need a robust data services platform like Portworx®, which provides features such as replication and high availability, security and encryption, capacity management, disaster recovery, and data protection to RKE2 deployments. By adopting RKE2 with Portworx, organizations can streamline their modernization journeys while avoiding the need to dedicate resources to designing and managing a custom Kubernetes storage layer.
	
	
	Table of Contents

	1.About this document
	

	2.Value proposition
	2.1. Benefits of Portworx
	2.2. Benefits of running Portworx on RKE2 with vSphere
	2.3. Target use cases

	3.Planning and architecture overview
	3.1. Reference architecture high level design

	4.Design considerations
	4.1. RKE2
	4.2. Prerequisites
	4.3. Networking
	4.4. Storage
	4.5. Implementing high availability
	4.6. Deployment model
	4.7. Resource considerations
	4.8. Performance considerations
	4.9. Security
	4.10. Monitoring
	4.11. Installation methods and tooling

	5. Operational considerations
	5.1. Post installation validation
	5.2. Scaling Portworx
	5.3. Backup and recovery
	5.4. Upgrading Portworx
	 5.5 Upgrading RKE2
	5.6. Logging and monitoring

	6. Application considerations
	6.1. Application HA
	6.2. Portworx Images
	6.3. Monitoring during the installation
	6.4. Validating post installation: checking cluster operators, cluster version and nodes
	6.5. Troubleshooting commands
	Appendix A
	Legal Notices and Attributions

