
Portworx
Reference Architecture
Google Distributed Cloud
Anthos on vSphere

Executive Summary

Modern applications are built using containers and orchestrated by Kubernetes, but they still
need a layer of persistence. Google Distributed Cloud (GDC for VMware), also known as
Anthos, is an industry leading hybrid cloud application platform powered by Kubernetes,
brings together tested and trusted services to reduce the friction of developing, modernizing,
deploying, running, and managing applications. In this document we refer to GDC as Anthos,
and it delivers a consistent experience across public cloud, on-premises, hybrid-cloud, or
edge architecture.

To run stateful applications on GDC, organizations need a robust data services platform like
Portworx®. Portworx provides features like replication and high availability, security and
encryption, capacity management, disaster recovery, and data protection to Google Anthos
deployments. Instead of spending resources architecting and managing a custom Kubernetes
storage layer, organizations can accelerate their modernization journeys by adopting a
solution like Google Anthos with Portworx.

Version 1.0 Page 1 of 29

Table of Contents

Executive Summary...1
1. About this document..3
2. Value proposition.. 3

2.1. Benefits of Portworx... 3
2.2. Benefits of running Portworx on Anthos with vSphere.. 4
2.3. Target use cases..4

3. Planning and architecture overview..4
3.1. Reference architecture high level design...4

4. Design considerations...8
4.1. Anthos, aka Google Distributed Cloud... 8
4.2 Networking..8
4.3 Storage..8
4.4. Implementing high availability..10
4.5. Deployment model..10
4.6. Resource considerations.. 10
4.7. Performance considerations... 11
4.8. Security...13
4.10. Installation methods and tooling... 15

5. Operational considerations... 17
5.1. Post installation validation... 17
5.2. Scaling Portworx.. 18
5.3. Backup and recovery..19
5.4. Upgrading Portworx... 19
5.5. Upgrading Anthos... 23

6. Application Considerations.. 25
6.1. Application HA... 25
6.2. Portworx Images..25
6.3. Monitoring during the installation...26

Legal Notices and Attributions... 29

Version 1.0 Page 2 of 29

1. About this document

This Portworx Reference Architecture contains a validated architecture and design model to deploy Portworx on
Anthos running on vSphere. It is intended for Kubernetes Administrators and Cloud Architects who are familiar with
Portworx.

The audience must be familiar with Anthos concepts, and familiarity with how Kubernetes is used is helpful as well.

The document has three main technical areas as described below:

● Planning and architecture overview

This section presents the high-level architecture overview on how Portworx will be deployed on Anthos. It
discusses the requirements related to Anthos for storage and storageless nodes and also vSphere
Datastores configuration recommendations.

● Design considerations

This section provides more detailed requirements and recommendations that must be considered during
the design phase. It covers the following areas:

● Anthos requirements
● Networking
● Capacity planning
● High availability
● Resource and performance considerations
● Security and monitoring

At the end of the section, a recommended Portworx installation template is presented.

● Operations considerations

This section covers “day 2” best practices after Portworx is deployed. It discusses the following topics:

● How to validate the Portworx installation
● Observability on the Portworx deployment
● How to scale Portworx
● Backup and recovery techniques
● Best practices on how to upgrade Portworx and Anthos
● How to check Portworx logs
● Application considerations

2. Value proposition

2.1. Benefits of Portworx

Traditional storage solutions provide a simple CSI (Container Storage Interface) driver connector to handle stateful
applications in Kubernetes environments. A CSI connector has several limitations and doesn't provide a robust
solution for high availability.

Unlike these solutions with CSI drivers, Portworx accelerates time to revenue, delivers data resiliency, and agility at
enterprise scale for Kubernetes storage and databases—leading to a boost in platform engineering productivity.

Version 1.0 Page 3 of 29

Portworx storage services provide scalability, industry-leading availability, and self-service access to storage for
Kubernetes environments. Integrated storage management includes rule-based automation, thin-provisioning
allocation and flexibility for multi-cloud, hybrid-cloud and on-premises environments.

2.2. Benefits of running Portworx on Anthos with vSphere

As part of digital transformation efforts, organizations are modernizing their applications and infrastructure by
adopting containers and Kubernetes for their applications and leveraging a solution like Google Anthos for their
infrastructure. Google Anthos allows organizations to take advantage of full-stack automated operations, a
consistent experience across all environments, and self-service provisioning for developers that lets teams work
together to move ideas from development to production.

Portworx adds a robust, secure, highly available, and scalable data management layer to Google Anthos so
applications can consume storage in an easy way.

2.3. Target use cases

This document provides guidelines and best practices to deploy Portworx on Anthos, specifically on workload
clusters, since typically there would not be any stateful workloads on the Anthos admin cluster.

After deploying Portworx using the guidelines in this document, Anthos users can deploy any type of stateful
application in Portworx. The scope of this document does not include any specific recommendations for particular
applications, but it is meant to be a stable deployment suitable for any application that requires storage.

3. Planning and architecture overview

3.1. Reference architecture high level design

The diagram below shows a high level design of the Portworx reference architecture deployed on Anthos running on
vSphere.

By implementing this design, a Platform Engineering team can automate the provisioning of a well defined
architecture following best practices that includes high availability, operations management, observability, business
continuity, performance and security.

Version 1.0 Page 4 of 29

Figure 1. High level architecture overview

Portworx requires a minimum of 3 storage nodes in the cluster, but for a production environment this reference
architecture recommends an initial cluster size with 6 storage nodes.

Storage nodes in Portworx handle both storage and compute tasks, so the term “storage node” does not imply
exclusive storage functionality. Think of storage nodes as compute nodes with storage capabilities, while
storageless nodes perform only compute tasks and access volumes over the network through storage nodes.

Although a Portworx cluster with 3 storage nodes may work well in some environments, there are some advantages
on using 6 storage nodes in the initial deployment:

● Cluster capacity

If a cluster with three storage nodes loses one, it loses one-third of its capacity, increasing the load on the remaining
two nodes until the lost node recovers.

In a six-node cluster, losing one node affects only one-sixth of its capacity, allowing the remaining five nodes to
more evenly distribute the load.

● I/O load distribution

A Portworx cluster with three storage nodes may face more frequent I/O latencies during peak times.

Conversely, a six-node cluster can distribute I/O requests more effectively, reducing the risk of I/O latencies.

Version 1.0 Page 5 of 29

Based on the recommendations above, it is important to prepare Anthos and vSphere before deploying Portworx.
Consider the following points:

Storage nodes

A group of 6 storage nodes is recommended for a production environment, since less than 6 storage nodes is
suboptimal, unless the workload is minimal or only for testing.

● The cluster should have six or more nodes that have access to storage.

● If the Anthos cluster spans multiple availability zones, equally distribute these storage nodes amongst
them. If you deploy across multiple availability zones, at least 3 zones are recommended.

● At install time Portworx will set the configuration parameter “MaxStorageNodesPerZone” to put an upper
limit on the maximum number of storage nodes it creates. Based on how many storage nodes you need
when scaling the cluster, you will need to update this field in the StorageCluster spec.

● May not use cluster autoscaling (can manually scale horizontally, i.e. add more nodes if needed to increase
storage capacity, but cannot shrink)

● Use the label portworx.io/node-type:storage on all nodes, so Portworx can automatically provision storage
for new nodes.

● Run hyperconverged applications on these nodes, i.e. applications that need to achieve high performance
levels.

● Each node should have at least 8 CPU cores and 16 GB RAM (check the Resource considerations section
for more details on CPU and memory requirements) along with what your end workloads may require.

Storageless nodes (optional)

An optional group of nodes for storageless nodes

● There is no minimum number of nodes

● Can have an associated cluster autoscaler

● Use the label “portworx.io/node-type:storageless” on all nodes, so Portworx can automatically add nodes
as storageless

● Can be used in a very dynamic compute environment, where the number of compute nodes can elastically
increase or decrease based on workload demand.

● Applications running on these nodes will access storage available in the storage nodes via the cluster
network

● Crucial to monitor performance closely in this scenario, since growing number of storageless nodes can
overload the storage nodes and affect application performance

● Each node must have a minimum of 8 CPU cores and 16 GB RAM (check the Resource considerations
section for more details on CPU and memory requirements)

vSphere API

Portworx has integrations to communicate with the vSphere API and dynamically manage Portworx-provisioned
block-storage automatically. Portworx will require a vCenter service-account to perform these operations.

Version 1.0 Page 6 of 29

https://docs.portworx.com/portworx-enterprise/reference-architectures/auto-disk-provisioning/vsphere/operations-guide
https://docs.portworx.com/portworx-enterprise/platform/kubernetes/gcp-anthos/install/anthos#step-1-vcenter-user-for-portworx

Data Stores

When Anthos is deployed on top of vSphere, along with planning for cluster and node capacity, you must also size
the VMFS datastores Portworx will utilize accordingly. The combination of vSphere datastore sizes and Portworx
pool sizes must be selected initially such that future growth of pool resizing is easily satisfied. A Portworx pool can
be expanded using two mechanisms:

● By adding a new disk (PX creates a new VMDK) and adding it to the pool

● By resizing all the existing disks (VMDKs) within the pool

Resize existing disks in a pool rather than adding new ones when increasing pool size. Resizing is quick and
immediate as it doesn't require data redistribution, unlike adding new disks, which is an I/O intensive process that
takes time proportional to the amount of data needing redistribution.

Following are the guidelines on planning and provisioning vSphere Datastores for Portworx to tailor to the resize disk
recommendation:

● Provision multiple and large sized datastores which can be expanded in the future. This reduces the
additional work of managing VMFS datastore sizing.

○ Having larger datastores avoids limitations on the maximum size of disk Portworx can create on
them.

○ Choosing fewer datastores of larger sizes is preferred over multiple datastores of smaller sizes.
For example, it is better to have 6 datastores of 16TiB than 12 datastores of 8TiB

○ By default Portworx allows for thin-provisioning, but to have a better insight into potentially
consumed space, in this reference architecture we elect the explicitly provisioning type of the
datastore volumes to be lazyzeroedthick

● Expanding existing datastores is preferred over adding new datastores, to avoid the need for performing a
Storage DRS and rebalancing of VMDKs.

● Portworx recommends limiting Datastore usage to a single Portworx cluster. This helps in predicting the
right starting datastore size. Do not share datastores across multiple Portworx clusters.

Storage Pools

Portworx recommends starting with a single pool per node with 6 drives in the pool.

● This can be achieved by having 6 different cloud drive spec entries in the StorageCluster spec where size
and type of all the disks is the same. The example below will create a 3TiB storage pool per node where
the pool has 6 disks.

cloudStorage:

deviceSpecs:

- type=lazyzeroedthick,size=500

- type=lazyzeroedthick,size=500

- type=lazyzeroedthick,size=500

- type=lazyzeroedthick,size=500

- type=lazyzeroedthick,size=500

- type=lazyzeroedthick,size=500

journalDevice: type=lazyzeroedthick,size=3

Version 1.0 Page 7 of 29

https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.storage.doc/GUID-4C0F4D73-82F2-4B81-8AA7-1DD752A8A5AC.html#:~:text=format%20to%20another.-,Thick%20Provision%20Lazy%20Zeroed,-Creates%20a%20virtual

● Dividing capacity across multiple drives in the pool will allow expanding the pool with just a drive resize in
future instead of adding disks to the pool.

○ With multiple disks in a single pool, while expanding a pool, smaller incremental resize is required
on the VMDKs which are spread out across datastores.

○ If a datastore hosts a large single disk, chances are that the datastore won't have enough space to
resize that single disk to satisfy the pool expansion requirement.

○ However when there are multiple disks in a pool, chances are that the datastore has the room for
this smaller incremental resize required on the disk.

○ The alternate expansion strategy (while it’s available) “Adding a disk” to the pool is a more
expensive and time consuming operation than resizing existing disks as addition leads to data
movement.

4. Design considerations

4.1. Anthos, aka Google Distributed Cloud

The minimal version of Anthos discussed in this reference architecture at the time of this document is GDC v1.28 or
newer. For currently supported versions of GDC (aka Anthos), please see the official google documentation.

4.2 Networking

Portworx recommends network bandwidth between nodes of 10Gbps, with a minimum requirement of 1Gbps, and
with latency less than 10ms between nodes.

By default Anthos will have all ports opened among the worker nodes, but in case you have any specific firewall in
your networks please ensure that ports in the “East-to-West” section of the relevant Portworx documentation are
opened for node to node communication. Additionally, the Telemetry-feature utilizes limited-outbound connectivity,
the destinations of which are specified in the “Outbound” section of the same page and need to be reachable from
nodes in the cluster.

4.3 Storage

This section provides guidelines on capacity planning for your Portworx cluster.

It covers 3 aspects of the capacity planning:

● Initial cluster capacity
● Storage node capacity sizing
● vSphere Datastore sizing

Initial Cluster Capacity

The following factors should be considered when creating the initial capacity planning:

● Number of volumes (PVCs) in the cluster
● Average size of volumes
● Number of nodes

Version 1.0 Page 8 of 29

https://cloud.google.com/kubernetes-engine/distributed-cloud/vmware/docs/version-history
https://docs.portworx.com/portworx-enterprise/platform/kubernetes/gcp-anthos/before-you-begin#portworx-network-requirements

● Volume replication (Portworx recommends a replication factor of 2 or 3, meaning total copies of a volume)

Below are two examples on how to calculate the initial cluster capacity:

Volume Size Volumes repl Factor Cluster Size, Total
(1.3 x Repl x Volumes x Size)

50GiB 30 3 5.85 TiB

100GiB 50 2 13 TiB

The initial cluster size is calculated by multiplying the average volume size, number of volumes and replication factor
plus adding a 30% buffer for local snapshots (this 30% represents approx amount of data changed, within all
snapshots).

Storage Node Capacity Sizing

Once you have the cluster size, you can calculate the size of each storage node:

Cluster size / Number of storage nodes = node capacity + minimum (either 10% or 100 Gib) for pool recovery in
case the pool becomes full

Following the example above:

Cluster Size, Total Storage Node Count Capacity/Node Datastores Count/Size

5.85 TiB 6 1.075 TiB 3 (2.2 TiB each)

13 TiB 6 2.26 TiB 3 (4.6 TiB each)

vSphere Datastore Sizing

Finally, you can plan the number of vSphere Datastores in your environment. One key point to consider is that
vSphere limits a Datastore capacity to 64 TB, and Portworx recommends multiple datastores rather than a single
large one.

Creating multiple datastores gives more room to expand these datastores in the future when the capacity needs
increase.

Expanding existing datastores is preferred over adding new datastores, to avoid the need for performing a Storage
DRS and rebalancing of VMDKs.

In the first example above you can provide 3 datastores, each one initially with a 2.2 TiB size, while in the second
example you can provide 3 datastores with 4.6 TiB size.

Version 1.0 Page 9 of 29

4.4. Implementing high availability

To implement a highly available cluster, you can take advantage of Portworx topology awareness feature.

Additionally, Portworx can automatically identify topology node-labels, specifically topology.kubernetes.io/region
and topology.kubernetes.io/zone

Whereas in the cloud, there are regions and zone values set by default, however in VMware (and on-prem)
environments, these will have to be manually configured. Ensure that your Anthos nodes have the necessary
topology labels by providing them in the node-pool configuration and that they are the same across nodes residing
in the same Anthos node pool. The recommendation for the 6 storage nodes is to have 2 storage nodes in each
zone. A zone in this case must be an isolated entity, that way if it fails, it does not affect other zones.

This scenario allows Portworx to automatically place volume replicas in separate failure-domains and if one domain
becomes unavailable the application can run in a different location where another replica of the same volume
resides.

The architecture diagram in section 3.1 illustrates how the different failure-domains are set up.

4.5. Deployment model

This reference architecture uses a deployment model where applications can run both on the storage and
storageless nodes.

As described in the Reference architecture high level design section this document recommends two separate
Anthos node groups; one for storage nodes, and one for the storageless nodes.

The node group for the storage nodes provides a static set of nodes for hyper converged applications. This node
group can be manually scaled out if more storage nodes are needed, but cannot be scaled back, i.e. you cannot
automatically remove storage nodes from the Portworx cluster (only manually).

On the other hand, with Anthos cluster autoscaler, it is easier to automate and manage Portworx storageless nodes
in this deployment model. The optional node group for the storageless nodes can have an associated cluster
autoscaler to automatically scale those nodes based on the cluster resources consumption.

For details on how to configure Anthos for auto-scaling, please refer to the Google docs.

4.6. Resource considerations

When designing the cluster for a specific workload, make a note of the expected number of volumes in the cluster to
be used at any given time, their average throughput or IOPS requirement, their HA level, and if snapshots are going
to be used or not.

In the following example, we are utilizing averages, which will be sufficient for the majority of workloads, however
workloads peaks will not be handled as efficiently due to these sizing decisions, but represent the best trade-off in
terms of performance vs unused idle capacity resulting from sizing towards peaks (presuming they are less
common).

Sum up these IOPS per volume, multiplied by their HA level, and add a snapshot and fragmentation overhead of 1.4.
This will give you the approximate backend IOPS requirement, which should be less than the sum of the IOPS per
pool across all the nodes in the cluster.

Version 1.0 Page 10 of 29

https://docs.portworx.com/portworx-enterprise/operations/operate-kubernetes/cluster-topology
https://cloud.google.com/kubernetes-engine/distributed-cloud/vmware/docs/how-to/cluster-autoscaler

For vSphere, each pool could be aggregated out of many VMDKs across datastores, the total IOPS should be a sum
of the IOPS per VMDK.

The table shows two examples using sample numbers for illustrative purposes:

Number of Volumes repl Factor Average IOPS Overhead Total IOPS

240 2 200 1.4 134400

300 3 200 1.4 252000

The minimum requirements for each Portworx node are 8 CPUs and 16 GB RAM, but depending on the expected I/O
load on the system, we recommend providing enough RAM and CPU resources in a high performance setting. For
high performance systems, we recommend at least 32 cores and 32 GB ram where Portworx is running along with
the applications on the same virtual machine.

4.7. Performance considerations

Portworx is set up with a default configuration to optimize cluster performance, but certain situations may benefit
from additional parameters. This section outlines scenarios where adding these parameters can boost the overall
performance of the Portworx cluster.

● Journal device

A dedicated journal device is recommended in all cases and newer versions of Portworx allow improved
performance in certain scenarios when a journal device is available. To enable it you can add the following in the
StorageCluster definition:

kind: StorageClusterspec:
...
cloudStorage:

...
journalDeviceSpec: type=lazyzeroedthick,size=3

...

When using a journal device you can also consider using the auto_journal I/O profile which can improve
performance for volumes with only a single replica. See this article for more details and use cases for this profile.

● StorageClass auto io-profile

Portworx can auto-detect the optimal IO profile for an application when the storage class sets the io_profile to auto.
In this case the replication factor must be set to 2 or 3. Here is an example of a custom storage class (in addition to
what the operator already creates) using the following parameter:

Version 1.0 Page 11 of 29

https://portworx.com/blog/boost-performance-with-journal-io-profile/

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
name: px-storage-class

provisioner: pxd.portworx.com
allowVolumeExpansion: true
parameters:
repl: "2"
priority_io: "high"
io_profile: auto

● Runtime options for leveraging more resources

Portworx consumes minimum CPU and memory from the VMs, by default as outlined previously, using only up to 8
vCPUs and up to 16 GB of memory. However, if your nodes have a high number of CPUs (greater than 32 vCPU)
and large memory (greater than 64GB), it is recommended to use the rt_opts_conf_high runtime option to allow
Portworx to use more CPU threads and memory, which allows for further improving performance.

Below is a snippet of a StorageCluster definition with this parameter:

kind: StorageCluster
.
spec:
...

runtimeOptions:
rt_opts_conf_high: "1"

...

● ‘nodiscard’ option

Some applications, like Kafka and Elastic, perform a large number of discard/delete operations. This can affect the
overall performance of the Portworx cluster. It is recommended when using the default ext4-based volume, to also
consider including the nodiscard parameter.

When using the nodiscard parameter, you should also be sizing the volumes(s) closely to the amount of expected
data, instead of overallocating the volume size upfront. Over-provisioning can result in inefficient allocation of
blocks (potentially leaving them fragmented), and since volumes are by-default thin-provisioned, resizing in the
future (which requires no downtime) is preferable rather than over-sizing volumes.

The example below has a StorageClass definition with this option:

kind: StorageClass
...
parameters:
...

nodiscard: "true"

Additionally, when using the nodiscard option, as data is written/deleted from the filesystem, it won’t immediately be
removed from the block devices serving those volumes. Therefore, if the extra consumed space is a concern, a
filesystem trim operation should run periodically to clear the deleted data from the block device. For instructions on

Version 1.0 Page 12 of 29

enabling this feature, refer to the Maintain volumes using Filesystem Trim article in the Portworx documentation.

4.8. Security

Securing your Portworx cluster involves two key areas:

1. Authorization: This protects Portworx volumes from unauthorized access.

2. Encryption: This secures the data within the volumes by encrypting it.

Authorization

With authorization, Portworx adds an extra layer of security for the Portworx volumes. Using well known industry
standards, Portworx protects the volumes from unauthorized access by adding a RBAC (Role Based Access Control)
mechanism. Only authenticated and authorized users can access the volumes. (by default Portworx creates a user
token for the ‘kubernetes’ user when security is enabled).

To enable authorization in Portworx, add the spec.security.enabled:true stanza in the StorageCluster yaml:

kind: StorageCluster
…
spec:
…
security:
enabled: true

…

Once enabled, only kubernetes users will be able to access the Portworx volumes if PVCs are created using storage
classes with the authentication token (see example here). By default ‘guest access’ is allowed for pre-existing
(unowned) volumes if no authentication token is included in the storage class, to disable ‘guest access’ see this
Portworx documentation link.

Additionally, any future pxctl commands will require an admin token to be used. Details on how to set this up can
be found in this Portworx documentation link.

More details and advanced configuration for multi-tenant clusters can be found in this Portworx documentation link.

Encryption

Portworx recommends protecting your volumes with encryption. This can happen at the Portworx volume level, or
further down in the stack (such as on a FlashArray).

All PX-encrypted volumes use a passphrase for protection and are encrypted both at rest and in transit.

Portworx supports several secret stores, such as Hashicorp Vault and Vault Transit, Kubernetes Secrets and most of
the public cloud provider secret stores. The complete list of supported secret store management can be found in the
Secret Store Management article of the Portworx documentation.

For this reference architecture Portworx uses the Hashicorp Vault secret store.

Version 1.0 Page 13 of 29

https://docs.portworx.com/portworx-enterprise/reference/cli/volume-trim
https://docs.portworx.com/portworx-enterprise/cloud-references/security/kubernetes/shared-secret-model-operator/storageclass
https://docs.portworx.com/portworx-enterprise/cloud-references/security/kubernetes/shared-secret-model-operator/customizing-security#disable-guest-role-access
https://docs.portworx.com/portworx-enterprise/cloud-references/security/kubernetes/shared-secret-model-operator/customizing-security#disable-guest-role-access
https://docs.portworx.com/portworx-enterprise/concepts/authorization/use-pxctl-security-enabled
https://docs.portworx.com/portworx-enterprise/cloud-references/security
https://docs.portworx.com/portworx-enterprise/operations/key-management
https://docs.portworx.com/portworx-enterprise/operations/key-management/vault

Before deploying Portworx, you must configure your Anthos cluster to access the Vault server using the Vault
kubernetes authentication method. Follow the instructions in the Vault article of the Portworx documentation to
complete this configuration.

Then when deploying Portworx, you can add Vault as the secret store provider:

kind: StorageCluster
…
spec:
…
secretsProvider: vault
…

After Portworx is successfully deployed, you must define a cluster-wide passphrase for Portworx to encrypt the
volumes.

Follow the steps in the Encrypting Kubernetes PVCs with Vault article of the Portworx documentation to create the
passphrase and start using encrypted volumes with Portworx. This document recommends using at least the
cluster-wide encryption feature provided by Portworx. For environments requiring additional security, such as
multi-tenant clusters, refer to the documentation in the link above, which details more advanced per-volume
encryption options.

4.9. Monitoring

Portworx can be configured to permit general observability by creating several numeric-insights (metrics) into the
various aspects of the system (performance, state-changes, resource-usage, etc).

Portworx has support for automatically deploying an open-source monitoring tool to collect and store metrics to
help with monitoring purposes. The widely used Prometheus-project is available to be spun up during the initial
Portworx deployment (or later if needed) by use of the Portworx Operator. It is enabled using the StorageCluster
object. More information is available here.

Prometheus-collected information

You can find a list of Portworx metrics generated in the Portworx Metrics Reference article of the Portworx
documentation.

AlertManager deployment

AlertManager is a component of Prometheus deployed alongside, that can act on the metrics available and send
alerts when certain conditions are met. Portworx provides an initial set of rules to capture common metrics-based
alerts. It can be viewed as per this documentation page.

You can additionally set up user-defined alerts in Anthos to receive standard Prometheus alerts provided by
Portworx.

Note the following:

● Any fired (active) alerts will be displayed in the “Alerts” tab of the web interface of prometheus.

Version 1.0 Page 14 of 29

https://docs.portworx.com/portworx-enterprise/operations/key-management/vault#using-kubernetes-authentication-method
https://docs.portworx.com/portworx-enterprise/operations/key-management/vault/pvc-enc
https://docs.portworx.com/portworx-enterprise/operations/operate-kubernetes/monitoring/monitor-portworx-cluster
https://docs.portworx.com/portworx-enterprise/reference/metrics
https://docs.portworx.com/portworx-enterprise/operations/operate-kubernetes/monitoring/monitor-portworx-cluster.html#view-provided-prometheus-rules

● You can see details on Portworx Prometheus rules by running the following command:

$ kubectl -n portworx get prometheusrules portworx -o yaml

Portworx also has its own internal implementation of other alerts based on Cluster/Node/Drive/Volume state
changes and conditions, the full list is here, however they are also made available via the metrics Prometheus makes
available.

Grafana dashboards

Portworx provides five out-of-the-box Grafana dashboards to help monitor its status and performance. To deploy
these dashboards in your own Grafana instance on Anthos, follow the steps outlined in the Configure the monitoring
solution article of the Portworx documentation. If Grafana is not already installed on your Anthos cluster, refer to the
Grafana documentation for installation and configuration instructions.

List of Portworx Grafana resources available:

● Internal KVDB (ETCD) dashboard
● Portworx Cluster dashboard
● Portworx Nodes dashboard
● Portworx Volumes dashboard
● Portworx Performance dashboard

4.10. Installation methods and tooling

Before installing Portworx on Anthos, complete the prerequisite steps outlined in the Portworx on Anthos section of
the Portworx documentation. Here is a summary:

● Follow the steps on the relevant section of the Portworx documentation.

● Once you complete the PX-Central’s installation-wizard, a zip file will be generated containing two YAML
files, one to install the Portworx Operator, and one to create the StorageCluster object, which will install
Portworx itself.

● First Install the Portworx operator using the YAML generated.

● Create the StorageCluster object generated in step 2.

Portworx suggests using its StorageCluster spec generator referenced above, to create the initial StorageCluster
spec template. Once generated, you can incorporate this template into an existing CI/CD pipeline as needed.

The initial StorageCluster generated from the installation-wizard needs to be modified in the following ways to follow
the best-practices guidelines in this document:

● cloudStorage.deviceSpecs

contains 6 disks in the storage pool as discussed in the Reference architecture high level design section, all
of of provision-type lazyzeroedthick

● cloudStorage.journalDeviceSpec

create a 3GB journal device per best practices recommendation, also lazyzeroedthick

Version 1.0 Page 15 of 29

https://docs.portworx.com/portworx-enterprise/reference/cli/alerts
https://docs.portworx.com/portworx-enterprise/operations/operate-kubernetes/monitoring/monitor-portworx-cluster#configure-grafana
https://docs.portworx.com/portworx-enterprise/operations/operate-kubernetes/monitoring/monitor-portworx-cluster#configure-grafana
https://grafana.com/docs/grafana/latest/
https://docs.portworx.com/portworx-enterprise/platform/kubernetes/gcp-anthos.html
https://docs.portworx.com/portworx-enterprise/platform/kubernetes/gcp-anthos/install/anthos-specgen#install-portworx-on-an-anthos-cluster
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.storage.doc/GUID-4C0F4D73-82F2-4B81-8AA7-1DD752A8A5AC.html

● security: enabled

Enable RBAC authorization for Portworx volumes

● secretsProvider: vault

Use Vault for encryption and security

● Additional vSphere details:

Specify credentials of the required vCenter service-account stored in the px-vsphere-secret, as well as
details for the vCenter URL and port, Datastore prefix

Below is an example StorageCluster definition with these additions and changes are emphasised with italics, based
on what was created using the Portworx installation wizard, but in accordance with the best-practices guidelines
provided in this document.

Note: some auto-generated annotations have been omitted for brevity

kind: StorageCluster
apiVersion: core.libopenstorage.org/v1
metadata:
name: px-cluster-refarch
namespace: portworx

spec:
image: portworx/oci-monitor:3.2.0
imagePullPolicy: Always
security:
enabled: true

kvdb:
internal: true

cloudStorage:
deviceSpecs:
- type=lazyzeroedthick,size=150
- type=lazyzeroedthick,size=150
- type=lazyzeroedthick,size=150
- type=lazyzeroedthick,size=150
- type=lazyzeroedthick,size=150
- type=lazyzeroedthick,size=150
journalDeviceSpec: type=lazyzeroedthick,size=3
provider: vsphere

secretsProvider: vault
stork:
enabled: true
args:
webhook-controller: "true"

autopilot:
enabled: true

Version 1.0 Page 16 of 29

https://docs.portworx.com/portworx-enterprise/platform/kubernetes/gcp-anthos/install/anthos#step-1-vcenter-user-for-portworx

runtimeOptions:
default-io-profile: "6"
rt_opts_conf_high: "1" # use only on high-performance nodes as discussed in section 4.7

csi:
enabled: true

monitoring:
telemetry:
enabled: true

prometheus:
exportMetrics: true

env:
- name: VSPHERE_INSECURE
value: "true"
- name: VSPHERE_USER
valueFrom:
secretKeyRef:
name: px-vsphere-secret
key: VSPHERE_USER

- name: VSPHERE_PASSWORD
valueFrom:
secretKeyRef:
name: px-vsphere-secret
key: VSPHERE_PASSWORD

- name: VSPHERE_VCENTER
value: "<vcenter_endpoint>"

- name: VSPHERE_VCENTER_PORT
value: "443"

- name: VSPHERE_DATASTORE_PREFIX
value: "<vcenter_datastore_prefix>"

- name: VSPHERE_INSTALL_MODE
value: "shared"

5. Operational considerations

5.1. Post installation validation

After deploying Portworx, you can perform the following steps to ensure that all components are functioning
correctly:

● Verify if all pods are running
● Verify the Portworx cluster status
● Verify the Portworx internal KVDB status
● Verify the Portworx cluster provisioning status (more details on the pools status)

To ensure your Portworx installation is successful, consult the Verify your Portworx Installation article in the
Portworx documentation for detailed command instructions.

Version 1.0 Page 17 of 29

https://docs.portworx.com/portworx-enterprise/platform/kubernetes/gcp-anthos/install/anthos-specgen#verify-your-portworx-installation

Once you confirm that Portworx is installed correctly, you can proceed to create your first Persistent Volume Claim
(PVC). For step-by-step instructions, visit the Create your First PVC article in the Portworx documentation.

Additionally, you may wish to consider setting up a defragmentation schedule in order to prevent fragmentation of
blocks (as discussed in section 4.7 on the topic of nodiscard parameter).

5.2. Scaling Portworx

There are several reasons to scale Portworx in your environment. Depending on these reasons, various methods can
be employed to effectively scale your deployment.

Adding Storage

Adding more storage on current Portworx nodes is commonly referred to as vertical scaling up the cluster.
Portworx recommends you use the Portworx Autopilot feature to accomplish this task.

You can create Autopilot rules to automatically increase the size of Portworx storage pools. The following types of
Autopilot rules help on managing storage pools:

● Expand every Portworx storage pool in your cluster
● Expand individual nodes’ Portworx storage pools

Adding Storage Nodes

In certain cases, you may need to add more storage nodes to your cluster. This task is commonly referred to as
horizontal scaling out the cluster.

Portworx recommends adding a new node in your cluster if one of the current nodes reaches a consistent 80%
IOPS or 80% CPU utilization. These can be checked in the monitoring system discussed previously (specifically the
Grafana dashboards).

Monitoring the latency on the pools is also important and high latency can also indicate a need for a new node.

To scale out a cluster you would modify the node-pool to increase the number of nodes. Portworx will automatically
be deployed in the new node that is created.

It is worth considering whether you may also want to redistribute volume replicas onto the new node(s), this can be
accomplished using autopilot as well.

While the best results come when leveraging Portworx’s ability to perform hyperconvergence of workloads on
storage nodes, there may be additional (non-IO) based reasons you also may wish to consider when deciding to
scale out the set of Storage Nodes (like needing more compute resources for those workloads). These
considerations are left up to the reader to decide when is appropriate to scale for those other (non-IO based)
reasons.

Adding Compute-only (Storageless) Nodes

As mentioned in the Reference architecture high level design section if you plan to run stateful applications in
compute nodes, i.e. nodes without storage, Portworx recommends you create a separate node pool in your Anthos
cluster and automatically add the label:

portworx.io/node-type: storageless

Version 1.0 Page 18 of 29

https://docs.portworx.com/portworx-enterprise/platform/kubernetes/gcp-anthos/install/anthos-specgen#create-your-first-pvc
https://docs.portworx.com/portworx-enterprise/reference/cli/defrag-schedule.html
https://docs.portworx.com/portworx-enterprise/operations/operate-kubernetes/autopilot
https://docs.portworx.com/portworx-enterprise/operations/operate-kubernetes/autopilot/use-cases/rebalance-pool.html
http://portworx.io/node-type

Storageless nodes can be created and removed as needed without impacting the overall status of the Portworx
cluster. You may want to consider evenly scaling of the storageless nodes across any topology-informed
failure-domains.

Portworx will automatically clean up and remove any storageless node from being in the storage cluster’s
membership after 20 minutes of the VM being unavailable.

5.3. Backup and recovery

Portworx recommends PX-Backup for backup and recovery of your cluster.

PX-Backup is a complete Kubernetes backup solution fully integrated with Portworx, and it is Kubernetes-aware, i.e.
understands all Kubernetes resources like statefulsets, secrets, configmap, PVC, etc. and Portworx volumes, so you
can have granular backups and restores if needed.

Portworx recommends creating different backup schedule policies for each namespace in your cluster and space
out those schedules throughout the day. This minimizes backups to interfere and compete with regular I/O loads in
the cluster.

For more details on PX-Backup please check its documentation in this link.

5.4. Upgrading Portworx

Pre-Upgrade Checks

Before upgrading Portworx, it is important to check if its current deployment is healthy:

● Ensure all pods in the portworx namespace are running:

❯ kubectl -n portworx get pods

NAME READY STATUS RESTARTS

autopilot-dbb5448c8-5jhpk 1/1 Running 0

portworx-api-bdh9l 2/2 Running 0

portworx-api-jkhmw 2/2 Running 0

portworx-api-mfpvt 2/2 Running 0

portworx-kvdb-czm9p 1/1 Running 0

portworx-kvdb-fbpm5 1/1 Running 0

portworx-kvdb-txggs 1/1 Running 0

portworx-operator-5868cfb59b-fg6qq 1/1 Running 2

portworx-pvc-controller-57b8ff658b-qmlcd 1/1 Running 1

portworx-pvc-controller-57b8ff658b-z656z 1/1 Running 1

portworx-pvc-controller-57b8ff658b-zcwbp 1/1 Running 1

prometheus-px-prometheus-0 2/2 Running 0

px-cluster-refarch-2ca0db39-a1a2-47b5-9048-726lzv 1/1 Running 0

px-cluster-refarch-2ca0db39-a1a2-47b5-9048-72gzjs 1/1 Running 0

px-cluster-refarch-2ca0db39-a1a2-47b5-9048-72gs4n 1/1 Running 0

px-csi-ext-749ddcb98d-8rwdw 3/3 Running 3

px-csi-ext-749ddcb98d-mz5qv 3/3 Running 1

px-csi-ext-749ddcb98d-wtg85 3/3 Running 4

px-prometheus-operator-cb976559-6qh7m 1/1 Running 0

px-telemetry-phonehome-5xx2z 2/2 Running 0

Version 1.0 Page 19 of 29

https://docs.portworx.com/portworx-backup-on-prem
https://docs.portworx.com/portworx-backup-on-prem/concepts

px-telemetry-phonehome-8bdck 2/2 Running 0

px-telemetry-phonehome-fz2j5 2/2 Running 0

px-telemetry-registration-7f8485b8b-xkkkf 2/2 Running 0

stork-776979dc7b-fht84 1/1 Running 1

stork-776979dc7b-l2pgk 1/1 Running 1

stork-776979dc7b-ldvv9 1/1 Running 1

stork-scheduler-5bc5576dcc-8rzpz 1/1 Running 1

stork-scheduler-5bc5576dcc-bbjxq 1/1 Running 1

stork-scheduler-5bc5576dcc-nx5vt 1/1 Running 0

Ensure all pods are in Running state and all numbers in the Ready column (such as 1/1, 2/2, or 3/3) have
matching numbers, i.e. running and ready. If any pod is not in this state please fix the pod(s) before starting the
upgrade. Check the Troubleshooting section in this document or contact Portworx support for further assistance.

● Ensure all Anthos nodes are ready:

❯ kubectl get nodes

NAME STATUS ROLES AGE VERSION

aleksanthos-uc-vm1 Ready control-plane,master 31d v1.28.12-gke.1100

pool-1-75f796558d-c7cxm Ready <none> 31d v1.28.12-gke.1100

pool-1-75f796558d-h42mr Ready <none> 31d v1.28.12-gke.1100

pool-1-75f796558d-hfsb4 Ready <none> 31d v1.28.12-gke.1100

pool-1-75f796558d-jt2h2 Ready <none> 31d v1.28.12-gke.1100

pool-1-75f796558d-l2fn2 Ready <none> 31d v1.28.12-gke.1100

pool-1-75f796558d-v4crk Ready <none> 31d v1.28.12-gke.1100

Ensure that all nodes are in Ready state before starting the Portworx upgrade. If any node is not in the 'Ready' state,
please address the issue before proceeding.. For assistance, check Anthos documentation or contact Google
support.

● Ensure all Portworx nodes are up and running (in the Ready state).

Version 1.0 Page 20 of 29

● You can then run the following commands below to check Portworx status:

❯ ADMIN_TOKEN=$(kubectl -n portworx get secret px-admin-token \

--template='{{index .data "auth-token" | base64decode}}')

❯ PX_POD=$(kubectl get pods -l name=portworx -n portworx \

-o jsonpath='{.items[0].metadata.name}')

❯ kubectl -n portworx exec -it $PX_POD -- /opt/pwx/bin/pxctl context create \

admin --token=$ADMIN_TOKEN

Context created.

❯ kubectl -n portworx exec $PX_POD -- /opt/pwx/bin/pxctl status

Status: PX is operational

Telemetry: Healthy

Metering: Disabled or Unhealthy

License: Trial (expires in 31 days)

Node ID: 5bef844f-f9e0-4126-aebd-3a12bb3cfaa2

IP: 10.13.237.179

Local Storage Pool: 1 pool

POOL IO_PRIORITY RAID_LEVEL USABLE USED STATUS ZONE REGION

0 HIGH raid0 900 GiB 16 GiB Online default default

Local Storage Devices: 6 devices

Device Path Media Type Size Last-Scan

0:1 /dev/sds STORAGE_MEDIUM_SSD 150 GiB 08 Nov 24 17:22 UTC

0:2 /dev/sdv STORAGE_MEDIUM_SSD 150 GiB 08 Nov 24 17:22 UTC

0:3 /dev/sdr STORAGE_MEDIUM_SSD 150 GiB 08 Nov 24 17:22 UTC

0:4 /dev/sdu STORAGE_MEDIUM_SSD 150 GiB 08 Nov 24 17:22 UTC

0:5 /dev/sdt STORAGE_MEDIUM_SSD 150 GiB 08 Nov 24 17:22 UTC

0:6 /dev/sdx STORAGE_MEDIUM_SSD 150 GiB 08 Nov 24 17:22 UTC

total - 900 GiB

Cache Devices:

* No cache devices

Journal Device:

1 /dev/sdw1 STORAGE_MEDIUM_SSD 3.0 GiB

Kvdb Device:

Device Path Size

/dev/sdh 32 GiB

* Internal kvdb on this node is using this dedicated kvdb device to store its data.

Cluster Summary

Cluster ID: px-cluster-8e9eaead-3f4d-4aaf-8f9d-e34f2f8ae88b

Cluster UUID: e5b5a686-c269-4f97-be9e-4ceb3922ff2b

Scheduler: kubernetes

Total Nodes: 6 node(s) with storage (6 online)
IP ID SchedulerNodeName Auth StNd Used Capacity Status StStat Version Kernel OS

10.13.226.39 f1cf2...74 pool-1-75f7...rk Enabled Yes 16 GiB 900 GiB Online Up 3.2.0.0-2ded0fe 5.15.0-1051-gkeop Ubuntu 22.04.4

10.13.229.226 b3ea1...14 pool-1-75f7...b4 Enabled Yes 16 GiB 900 GiB Online Up 3.2.0.0-2ded0fe 5.15.0-1051-gkeop Ubuntu 22.04.4

10.13.229.18 b0a75...fb pool-1-75f7...mr Enabled Yes 16 GiB 900 GiB Online Up 3.2.0.0-2ded0fe 5.15.0-1051-gkeop Ubuntu 22.04.4

10.13.237.179 5bef8...a2 pool-1-75f7...h2 Enabled Yes 16 GiB 900 GiB Online Up. 3.2.0.0-2ded0fe 5.15.0-1051-gkeop Ubuntu 22.04.4

10.13.227.252 40011...6e pool-1-75f7...n2 Enabled Yes 16 GiB 900 GiB Online Up 3.2.0.0-2ded0fe 5.15.0-1051-gkeop Ubuntu 22.04.4

10.13.239.37 277e8...d1 pool-1-75f7...xm Enabled Yes 16 GiB 900 GiB Online Up 3.2.0.0-2ded0fe 5.15.0-1051-gkeop Ubuntu 22.04.4

Global Storage Pool

Total Used : 96 GiB

Total Capacity : 5.3 TiB

Telemetry: Healthy

Version 1.0 Page 21 of 29

Similar to previous steps, ensure all Portworx nodes are online and errors or warnings are displayed in the command
above. If you encounter any errors, check the Troubleshooting section in this document or contact Portworx support
for further assistance.

● Ensure all Portworx KVDB instances are running by running the command below:

❯ ADMIN_TOKEN=$(kubectl -n portworx get secret px-admin-token \

--template='{{index .data "auth-token" | base64decode}}')

❯ PX_POD=$(kubectl get pods -l name=portworx -n portworx \

-o jsonpath='{.items[0].metadata.name}')

❯ kubectl -n portworx exec -it $PX_POD -- /opt/pwx/bin/pxctl context create \

admin --token=$ADMIN_TOKEN

Context created.

❯ kubectl -n portworx exec $PX_POD -- /opt/pwx/bin/pxctl service kvdb members

Kvdb Cluster Members:

ID PEER URLs CLIENT URLs LEADER HEALTHY DBSIZE

40011...6e [http://px-1.internal.kvdb:9018] [http://10.13.227.252:9019] true true 548 KiB

277e8...d1 [http://px-2.internal.kvdb:9018] [http://10.13.239.37:9019] false true 536 KiB

f1cf2...74 [http://px-3.internal.kvdb:9018] [http://10.13.226.39:9019] false true 536 KiB

Your output must:

● Show 3 KVDB members
● One of the members must be the leader
● Members must be all healthy

If you encounter any errors, check the Troubleshooting section in this document or contact Portworx support for
further assistance.

Operator Upgrade

After all prerequisites above have been completed the first component to upgrade is the Portworx operator.

You will need to upgrade the operator to the latest version (see the release notes to see the latest version available).

1. Change the px-operator deployment image: version-tag, if necessary.
2. Then run the following command to confirm Portwox operator is running after the upgrade:

❯ kubectl -n portworx get pod -l name=portworx-operator

NAME READY STATUS RESTARTS AGE

portworx-operator-86dff4955-l2fsd 1/1 Running 0 25m

Portworx Upgrade

Once you’ve upgraded the Operator, you’re ready to begin upgrading Portworx and all its associated components.
Portworx utilizes a rolling upgrade approach, upgrading one node at a time. It will only proceed to the next node
after the previous one has been successfully upgraded.

Version 1.0 Page 22 of 29

https://docs.portworx.com/release-notes/operator

To upgrade Portworx, edit the StorageCluster resource and update the Portworx image. For instance, to upgrade to
release 3.2.0, modify the image entry as follows:

​​image: portworx/oci-monitor:3.2.0

Besides Portworx, other components are automatically upgraded as well to the versions compatible with the
Portworx release you are upgrading to, like Autopilot, Stork and CSI.

For more detailed instructions on upgrading Portworx, visit the Upgrade Portworx using the Operator article of the
Portworx documentation.

5.5. Upgrading Anthos

Before upgrading Anthos, you must check if the new version of Anthos is compatible with Portworx to ensure
Portworx will work properly after the upgrade. In some cases, you may need to upgrade Portworx first, prior to
upgrading the Anthos cluster.

To ensure the smooth operation of your Anthos cluster with Portworx during and after an Anthos upgrade please
follow these best practices:

● If the new Anthos version has a new kernel then make sure the current deployed version of Portworx is
compatible with this new kernel version.

● If the new Anthos version has a new version of kubernetes then make sure the currently deployed version
of Portworx is compatible with it, otherwise you’ll need to update Portworx to support the newer version of
Anthos as outlined here.

● Make sure the deployed version of Portworx is compatible with the new version of Anthos you are planning
to use

● Make sure Portworx cluster is healthy

● It is preferable to have the Anthos nodes use static IP allocation (along with only one extra IP in reserve)
rather than dynamic (which may not have any limits on allocatable IP addresses), since this can help
serialize the Anthos upgrades which (as discussed in the next point) should be more stable from the
Portworx perspective. The main downside is more time needs to be allocated to the upgrade if there is a
high number of nodes to process sequentially.

● Parallel upgrades of Anthos nodes are not advised, as this can lead to a situation where more than one
node can go offline that has services Portworx runs, that are designed for single failures only, and this can
affect your Portworx cluster’s availability during Anthos upgrades. If parallel-node Anthos upgrades are a
requirement, please perform them during maintenance windows so as not to impact IO-requiring
applications (and Portworx should auto-recover if the nodes successfully come back up) .

● Make sure Portworx internal KVDB is healthy and all 3 instances of KVDB are up and running. Portworx
internal KVDB has an associated PodDisruptionBudget (PDB) that requires at least 2 KVDB pods be up and
running, so you need all 3 KVDB pods running before starting the Anthos upgrade, otherwise a node
draining operation could fail and block the upgrade

5.6. Logging and monitoring

Version 1.0 Page 23 of 29

https://docs.portworx.com/portworx-enterprise/operations/operate-kubernetes/upgrade/upgrade-operator
https://docs.portworx.com/portworx-enterprise/platform/kubernetes/gcp-anthos/before-you-begin#portworx-enterprise-supported-kubernetes-versions
https://kubernetes.io/docs/tasks/run-application/configure-pdb/

All Portworx pods will generate logs that can be viewed or retrieved using standard Anthos command lines (kubectl

logs). If necessary (or required by Portworx support personnel) you can increase log levels by updating the
StorageCluster for each component, for example to enable debug level for the Stork component you can add the
spec.stork.args.verbose: true stanza to the StorageCluster resource:

kind: StorageCluster

...

spec:

...

stork:

args:

verbose: true

...

enabled: true

...

To enable debug level in the Portwox container, add the PX_LOGLEVEL=debug environment variable to the
StorageCluster specification:

kind: StorageCluster

...

spec:

...

env:

- name: PX_LOGLEVEL

value: debug

...

To create a diagnostic-bundle for troubleshooting Portworx, you initiate the collection by running the following
command on a specific Portworx-running node:

❯ ADMIN_TOKEN=$(kubectl -n portworx get secret px-admin-token \

--template='{{index .data "auth-token" | base64decode}}')

❯ PX_POD=$(kubectl -n portworx get po -lname=portworx -o wide | awk '$7 ~ /^yournodename$/ {print

$1}')

❯ kubectl -n portworx exec -it $PX_POD -- /opt/pwx/bin/pxctl context create \

admin --token=$ADMIN_TOKEN

Context created.

❯ kubectl -n portworx exec $PX_POD -- /opt/pwx/bin/pxctl service diags -a

Running PX diagnostics inside OCI-Monitor container - forwarding request to 127.0.0.1

Running Diagnostics on remote node 127.0.0.1....

Generated diags for node 127.0.0.1

This will generate a tar.gz file that can be sent to Portworx support for investigation on issues. If you have Telemetry
enabled the diags file is automatically to Pure1.

Version 1.0 Page 24 of 29

To enable Telemetry follow the instructions in the documentation link here.

6. Application Considerations

All stateful applications will consume one or many PersistentVolumeClaims (PVC) which are provided by Portworx.
These PVCs should be created using one of the default StorageClasses created by Portworx Operator. By default all
StorageClasses have volume-replication enabled and Portworx recommends enabling volume replication if other
StorageClasses are created.

6.1. Application HA

Intra Cluster

Portworx ensures data availability through storage replication, allowing an application to access its data from a
replica node should the original node become unavailable. However, if the node hosting an application pod fails, the
application will experience downtime until Kubernetes moves this pod to another healthy node within the cluster.
Thus, while storage remains accessible, the application itself may be temporarily offline. Depending on your
requirements and the nature of your application, you may opt for one of the following strategies:

1. HA Mode: For applications that support HA mode and require zero downtime, it is advisable to run multiple
replicas of the application pods. This configuration ensures continuous service availability, as the failure of
a node hosting one of the pods will lead the other replicas to seamlessly continue handling traffic.

2. Non-HA Mode: For applications that can withstand temporary downtime during Kubernetes' failover
process or those that do not support HA mode, deploying a single replica of the application pod is
sufficient.

6.2. Portworx Images

To get list of Portworx images, you can point your browser to an URL similar to this:

https://install.portworx.com/3.2/images?kbver=1.28.12-gke.1100

The example above will display images for the latest PX version 3.2.x for the kubernetes version 1.28.12-gke.1100

You can also use the curl command, for example:

❯ curl -s 'https://install.portworx.com/3.2/images?kbver=1.28.12-gke.1100' | sort

docker.io/nginxinc/nginx-unprivileged:1.25

docker.io/openstorage/cmdexecutor:24.3.2

docker.io/openstorage/stork:24.3.2

docker.io/portworx/autopilot:1.3.15

docker.io/portworx/oci-monitor:3.2.0

docker.io/portworx/portworx-dynamic-plugin:1.1.1

docker.io/portworx/px-enterprise:3.2.0

docker.io/portworx/px-operator:24.1.3

docker.io/purestorage/ccm-go:1.2.2

docker.io/purestorage/log-upload:px-1.1.29

docker.io/purestorage/realtime-metrics:1.0.29

docker.io/purestorage/telemetry-envoy:1.1.16

quay.io/prometheus-operator/prometheus-config-reloader:v0.75.0

Version 1.0 Page 25 of 29

https://docs.portworx.com/portworx-enterprise/platform/openshift/ocp-gcp/operations/troubleshooting/enable-pure1-upgrades.html
https://install.portworx.com/3.2/images?kbver=1.28.12-gke.1100
https://install.portworx.com/3.2/images?kbver=1.28.12-gke.1100

quay.io/prometheus-operator/prometheus-operator:v0.75.0

quay.io/prometheus/alertmanager:v0.27.0

quay.io/prometheus/prometheus:v2.54.1

registry.k8s.io/kube-controller-manager-amd64:v1.28.12

registry.k8s.io/kube-scheduler-amd64:v1.21.4

registry.k8s.io/kube-scheduler-amd64:v1.28.12

registry.k8s.io/pause:3.1

registry.k8s.io/sig-storage/csi-node-driver-registrar:v2.12.0

registry.k8s.io/sig-storage/csi-provisioner:v3.6.1

registry.k8s.io/sig-storage/csi-resizer:v1.12.0

registry.k8s.io/sig-storage/csi-snapshotter:v8.1.0

registry.k8s.io/sig-storage/snapshot-controller:v8.1.0

In order to pull down the images and push them to your private registry, please consult this section of the docs,
which describes the procedure we have developed for how you can upload those images to a local repository.

6.3. Monitoring during the installation

Once Portworx is deployed, you can follow the progress by checking status of the pods:

❯ kubectl -n portworx get pods

NAME READY STATUS RESTARTS AGE

autopilot-858b769dbc-4qg86 1/1 Running 0 25m

portworx-api-4k7w2 2/2 Running 3 (23m ago) 24m

portworx-api-hkqh8 2/2 Running 3 (23m ago) 24m

portworx-api-pqdtr 2/2 Running 3 (23m ago) 24m

portworx-api-qfbct 2/2 Running 3 (23m ago) 24m

portworx-api-snp9b 2/2 Running 4 (22m ago) 25m

portworx-api-xkt84 2/2 Running 3 (23m ago) 24m

portworx-kvdb-d57ps 1/1 Running 0 22m

portworx-kvdb-kdhsz 1/1 Running 0 22m

portworx-kvdb-v4wm2 1/1 Running 0 22m

portworx-operator-86dff4955-l2fsd 1/1 Running 0 38m

portworx-pvc-controller-68fcdc9fdc-c2tpb 1/1 Running 0 24m

portworx-pvc-controller-68fcdc9fdc-jgh7m 1/1 Running 0 24m

portworx-pvc-controller-68fcdc9fdc-n4jp9 1/1 Running 0 25m

prometheus-px-prometheus-0 2/2 Running 0 24m

px-cluster-8e9ea...mv 1/1 Running 0 24m

px-cluster-8e9ea...sg 1/1 Running 0 24m

px-cluster-8e9ea...65 1/1 Running 0 24m

px-cluster-8e9ea...cs 1/1 Running 0 24m

px-cluster-8e9ea...tp 1/1 Running 0 24m

px-cluster-8e9ea...kq 1/1 Running 0 24m

px-csi-ext-5cc967d5-2s2bl 3/3 Running 0 24m

px-csi-ext-5cc967d5-lfcb7 3/3 Running 0 24m

px-csi-ext-5cc967d5-qjndw 3/3 Running 0 24m

px-prometheus-operator-7fd768bcff-bhgbt 1/1 Running 0 25m

px-telemetry-phonehome-54bxc 2/2 Running 0 22m

px-telemetry-phonehome-dk75p 2/2 Running 0 22m

px-telemetry-phonehome-fr974 2/2 Running 0 22m

px-telemetry-phonehome-hlwmm 2/2 Running 0 22m

Version 1.0 Page 26 of 29

https://docs.portworx.com/portworx-enterprise/platform/kubernetes/bare-metal/airgapped-baremetal/install

px-telemetry-phonehome-s628m 2/2 Running 0 22m

px-telemetry-phonehome-xq26r 2/2 Running 0 22m

px-telemetry-registration-c5bfdf4f-kpknc 2/2 Running 0 22m

stork-674c5d4bf5-454q8 1/1 Running 0 24m

stork-674c5d4bf5-6kmwn 1/1 Running 0 25m

stork-674c5d4bf5-wd8nj 1/1 Running 0 24m

stork-scheduler-6dcdc656d8-5jvl9 1/1 Running 0 24m

stork-scheduler-6dcdc656d8-5zqpn 1/1 Running 0 25m

stork-scheduler-6dcdc656d8-xkszj 1/1 Running 0 24m

Another monitoring approach is to get the status of the StorageNodes resources:

❯ kubectl -n portworx get storagenodes

NAME ID STATUS VERSION AGE

pool-1-75f796558d-c7cxm 277e8...d1 Online 3.2.0.0-2ded0fe 27m

pool-1-75f796558d-h42mr b0a75...fb Online 3.2.0.0-2ded0fe 26m

pool-1-75f796558d-hfsb4 b3ea1...14 Online 3.2.0.0-2ded0fe 26m

pool-1-75f796558d-jt2h2 5bef8...a2 Online 3.2.0.0-2ded0fe 26m

pool-1-75f796558d-l2fn2 40011...6e Online 3.2.0.0-2ded0fe 26m

pool-1-75f796558d-v4crk f1cf2...74 Online 3.2.0.0-2ded0fe 26m

At the end of deployment (when the StorageNodes transition from Initializing to Online), all pods should be
running and in the Ready state, if any problems happen please check the troubleshooting section below.

Validating post installation: checking cluster operators, cluster version and nodes

After deploying Portworx you can follow the steps in this link to verify the installation and create your PVC with a
Portwox storage class.

Troubleshooting commands

To troubleshoot installation issues you can check the logs from the pods that may be failing and look for some
errors. For example to troubleshoot a specific Portworx pod from a cluster deployed with the name
`px-cluster-refarch` you can run this command:

❯ kubectl -n portworx logs px-cluster-refarch-pod-name-xxxxxx

Version 1.0 Page 27 of 29

https://docs.portworx.com/portworx-enterprise/platform/kubernetes/gcp-anthos/install/anthos-specgen#verify-your-portworx-installation

Other helpful commands:

● Describe a pod to check for any errors in the Events section. The example below shows that the `stork`
image pull is failing:

❯ kubectl -n portworx describe pod stork-674c5d4bf5-6kmwn

Events:

Type Reason Age From Message

---- ------ ---- ---- -------

Normal Scheduled 55s default-scheduler Successfully assigned portworx/stork-674c5d4bf5-6kmwn to

pool-1-75f796558d-jt2h2

Normal Pulling 55s kubelet Pulling image "docker.io/openstorage/stork:24.3.2"

Warning Failed 14m kubelet Failed to pull image "docker.io/openstorage/stork:24.3.2": rpc

error: code = Unknown desc = writing blob: storing blob to file "/var/tmp/storage63576889/3": happened during

read: read tcp [2620:125:9006:1324:bb4c:9a1:72cf:488b]:55724->[2606:4700::6810:62d7]:443: read: connection

reset by peer

● Retrieve logs from the Portworx operator pod:

❯ kubectl -n portworx logs -l name=portworx-operator --tail=9999

time="08-11-2024 17:06:14" level=info msg="Starting openstorage operator version 24.1.3-d831f9cc"

file="operator.go:125"

time="08-11-2024 17:06:14" level=info msg="Registering components" file="operator.go:167"

time="08-11-2024 17:06:14" level=info msg="Found namespaceNamespaceportworx" file="k8sutil.go:80"

time="08-11-2024 17:06:14" level=info msg="Found podnamePod.Nameportworx-operator-86dff4955-l2fsd"

file="k8sutil.go:127"

time="08-11-2024 17:06:14" level=info msg="Found

PodPod.NamespaceportworxPod.Nameportworx-operator-86dff4955-l2fsd" file="k8sutil.go:142"

time="08-11-2024 17:06:14" level=info msg="Pods owner

foundKindDeploymentNameportworx-operatorNamespaceportworx" file="metrics.go:174"

time="08-11-2024 17:06:14" level=info msg="Metrics Service object

updatedService.Nameportworx-operator-metricsService.Namespaceportworx" file="metrics.go:94"

time="08-11-2024 17:06:14" level=info msg="cluster is running k8s distribution v1.28.12-gke.1100"

For more information on how to troubleshoot Portworx, refer to the Troubleshooting section of the Portworx
Documentation.

Details on how to contact Portworx support are available here.

Version 1.0 Page 28 of 29

https://docs.portworx.com/portworx-enterprise/operations/operate-kubernetes/troubleshooting
https://docs.portworx.com/portworx-enterprise/operations/operate-kubernetes/troubleshooting
https://docs.portworx.com/portworx-enterprise/support/contact-support

Legal Notices and Attributions

Pure Storage, the Pure Storage P Logo, Portworx and the other marks on the Pure Storage Inc. Trademark List are
trademarks or registered trademarks of Pure Storage Inc. in the U.S. and/or other countries. The Pure Storage
Trademark list can be found at purestorage.com/trademarks. Use of Pure Storage Products and Programs are
covered by IP, and other terms, available at: purestorage.com/legal/productenduserinfo.html and
purestorage.com/patents, including the Pure Storage End User Agreement at Pure Storage End User Agreement.

Pure Storage products and programs are distributed under a license agreement restricting their use, copying,
distribution, and decompilation/reverse engineering. No part of this documentation, or the programs to which it
applies, may be reproduced in any form by any means without prior written authorization from Pure Storage, Inc.
and its licensors, if any.

THIS PROGRAM AND ACCOMPANYING DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS, AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT
TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. PURE STORAGE SHALL NOT BE
LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS PROGRAM OR DOCUMENTATION. PURE STORAGE MAY MAKE IMPROVEMENTS
AND/OR CHANGES IN THE PURE PRODUCTS AND/OR THE PROGRAMS DESCRIBED HEREIN AT ANY TIME
WITHOUT NOTICE.

THIS INFORMATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY AND IS NOT A COMMITMENT,
PROMISE, OR LEGAL OBLIGATION TO DELIVER ANY MATERIAL, CODE, OR FUNCTIONALITY AND SHOULD NOT BE
RELIED UPON IN MAKING PURCHASING DECISIONS OR INCORPORATED INTO ANY CONTRACT.

Note about the draft document: texts marked with this format are the guidelines present in the original RA template
document and must be removed from the final document.

©2024 Pure Storage, Inc.

Version 1.0 Page 29 of 29

http://purestorage.com/trademarks
http://purestorage.com/legal/productenduserinfo.html
http://purestorage.com/patents
http://purestorage.com/patents
https://www.purestorage.com/content/dam/pdf/en/legal/pure-enduser-agreement.pdf

